
Calculus of Variations

Consider a function with fixed endpoints x(t0) = x0 and x(t1) = x1 which is a
piceswise smooth scalar function defined for all t ∈ [t0, t1]. There exists a scalar
function of this function x(·) , its derivative ẋ(·) and time t: f [t, x, ẋ] which
is also defined throughout the entire interval t ∈ [t0, t1]. It is convenient that
this new function f(·) is continuous and contains as many partial derivatives as
necessary. The functional J(·) is now the sum of f(·) over the range of t.

J(x(·))=̂
∫ t1

t0

f [t, x(t), ẋ(t)]dt (1)

The global absolute minimum of J(·) occurs at x∗ if and only if J(x ∗ (·)) ≤
J(x(·)) ∀x ∈ {domain}. The local minimum of the integral occurs at x∗

if within the immediate neighborhood of x∗ the values of J(·) are greater than
those at x∗. At a local minimum — a global minimimum is also a local minimum
– the rate of change of the functional is zero, the function is stationary.

Using various theorems of the calculus of variations presented in the book
the Euler-Lagrange form can be derived

f,x = f,ẋtẋ
∗(t) + f,ẋẋẍ

∗(t) ∀t ∈ I (2)

Where I is the domain on which all the derivatives are continuous.
For mechanics problems the inverse function is of primary importance. If

the function x(t) = g(t, α, β) is written in terms of a two paramater function,
find the integrands f(·) which make the function J(·) stable. Assume that there
exist continuous functions φ(·) and ψ(·) to eliminate the constants.

x(t) = g[t, φ(t, x(t), ẋ(t)), ψ(t, x(t), ẋ(t))]
ẋ(t) = gt[t, φ(t, x(t), ẋ(t)), ψ(t, x(t), ẋ(t))] (3)

Then ẍ(t) = G[t, x(t).ẋ(t)] = gtt[t, φ(t, x(t), ẋ(t)), ψ(t, x(t), ẋ(t))]. And

f,x − f,ẋt − ẋ(t)f,ẋx = Gf,ẋẋ (4)

This solution must hold for every initial condition {x[t0], ẋ[t0]}.
Letting M(t, x, ẋ)=̂f,ẋẋ(t, x, ẋ). And assuming that the derivative operation

is linear f,xr = f,rx, then

M,t + ẋM,x +GM,ẋ +G,ẋM = 0 (5)

The general solution to this pde is M = Φ
Θ . Where Φ is differentialbe nonzero

but otherwise arbitrary and

Θ=̂ exp
{∫

G,ẋ [t, g(t, α, β), gt(t, α, β)] dt
}

(6)

Finally functions f(·) can be found by integrating

f(t, x, ẋ) =
∫ ẋ

0

∫ q

0

M(t, x, p)dpdq + ẋλ(t, x) + µ(t, x) (7)

Where λ(·) and µ(·) are otherwise arbitrary functions which satisfy the conti-
nuity conditions and are defined on the required domain.
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Example

Consider a unit mass subjected to a force P (t, x), where t is time and x is
displacement. For rectilinear motion it follows from Newton’s second law:

ẍ(t) = P (t, x(t)) (8)

Suppose the applied force is derivable from potential, that is there is a function
U(·) such that

P (t, x) =
∂U(t, x)
∂x

(9)

It follows from Hamilton’s principle that the equation of motion for the particle
is

J(x(·)) =
∫ t1

t0

[
1
2
ẋ2(t) + U(t, x(t))

]
dt (10)

And the Euler-Lagrange equation returns ẍ − U, x = 0, the same as Newton’s
law of motion.

To find other stationary principles that apply to force P (other than Hamil-
tons) consider an equation of motion of the form:

ẍ(t) = G [t, x(t), ẍ(t)] (11)

There are an infinity of solutions, nevertheless try the form:

G(t, x, ẋ) = a(t, x) + b(t)r + c(x)r2. (12)

Choose Φ(α, β) = 1 for simplicity. Then

M(t, x, r) = Θ−1[t, φ(t, x, r), ψ(t, x, r)] (13)

Combine to find
Θ [· · ·] = exp{

∫
b(t)dt+ 2

∫
c(x)dx} (14)

Substituting into f(·)

f(·) =
1
2
Θ−1(t, x)ẋ2 +

∫
a(t, x)Θ−1(t, x)dx (15)

In other words, the Euler-Lagrange equation for the integral is

ẍ = a(t, x(t)) + b(t)ẋ(t) + c(x(t))ẋ2(t) (16)

The force function is related to the potential

G(t, x, ẋ) = a(t, x) =
∂U(t, x)
∂x

(17)

And finally

f(t, x, r) =
1
2
r2 + U(t, x) (18)

Which is a special case of Hamilton’s principle.
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