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These presentations follow the general outline presented in Strogatz,
Nonlinear Dynamics and Chaos

1 Phase-Portraits and Linear Dynamical Sys-
tems (Smita Sihag)

1.1 Differential Equations and Fixed Points

Definition 1.1. A fized point of a differential equation is a point such that
= 0.

In other words, if the differential equation is interpreted as a vector field,
then the flow is zero at a fixed point. Points where & # 0 are also important.
The flow is to the right when & > 0 and to the left when & < 0. This helps us
further classify fixed points according to their stability.

Definition 1.2. A stable fixed point is one towards which flow occurs (i.e.
4 > 0 to its left and £ < 0 to its right. In contrast, the direction of flow is away
from an unstable fixed point.

The signs of & in the neighborhood of an unstable fixed point are the reverse
of those around a stable fixed point.

1.1.1 An Easy Example
Consider the nonlinear differential equation
& =sinz, 0<z <27, (1.1)

Differential equation (1.1) can be easily solved by the method of separation of
variables:

dzx

d
b= =sing = dt = —— ét:/cscmdm: —Injescz + cotz| + C
dt sinz

Suppose now that the initial condition is that £ = xg at t = 0. Then solving for
the constant C gives C = In |csc zg + cot zg|. Therefore the solution to (1.1) is:

cscxp + cot xg
cscx + cotx

t=1In (1.2)




In this case, the fixed points occur at 0,7, and 27. A graph of z versus & makes
it clear that only 7 is a stable fixed point. If, for example, a trajectory begins
at 7, then that trajectory will asymptotically approach the stable fixed point
.

1.2 Two-Dimensional Linear Systems
Our goal is to find a solution to the general two-dimensional linear system of

equations,

{ = ax + by (1.3)

y=cz+dy
The system of equations (1.3) can also be written in vector notation:
()= 2)C)
g/ \e¢ d) \y
Let’s denote by A the above 2x2 matrix:
r=(2a)
Then, the linear system is equivalent to
i = Agz, (1.4)

where ¥ = (;) Let us suppose that the solution to this system is given by

At

7= ey, (1.5)

where @ = (7). Then, plugging equation (1.5) into (1.4) gives
XM = eMAT. (1.6)

Dividing both sides of (1.6) by e leaves us with the equation
AT = )7, (1.7)

which means that ¥ is an eigenvector for the eigenvalue A\. We then call (1.5) an
eigensolution. This, therefore, is a good time to brush up on our linear algebra.

1.2.1 How to Find Eigenvalues and Eigenvectors
In order to find the eigenvalues of our matrix A, we must first posit a definition.
Definition 1.3. The characteristic equation of an nxn matrix M is

det(M — AI) =0,

where I is the identity matrix.



For our 2x2 matrix A, the characteristic equation is

a— A b
det( c d—)\>_0'

Taking the determinant gives
M —TA+A=0, (1.8)
where
T = trace(A) = a + d,
A =det(A) = ad — be.
Using the quadratic equation, we find that

r+VATAR 7oA w9)
:—7 2:— .

A
! 2 2

are the eigenvalues of equation (1.8) Assuming that the values of A\, Ay we found
in (1.9) are distinct, we know that the corresponding eigenvectors @; and ¥ are
linearly independent. These eigenvectors are found by solving equation (1.7)
with the appropriate values of A plugged in. We then write down a general
solution for our linear system:

.’)_L"(t) = cle)‘lt@’l =+ Cze)\zt’ﬁz (1.10)

1.3 Further Classification of Fixed Points

Consider 72 — 4A = 0, the discriminant of the characteristic equation (1.8).
This discriminant allows one to classify fixed points in a very specific way. To
better understand the following definitions, consider the graph of 72 — 4A = 0,
drawn with A on the horizontal axis and 7 on the vertical axis. This graph is
a parabola which opens to the right:

Definition 1.4. A fixed point is a saddle if A < 0.

Definition 1.5. A fixed point is a stable node if A = 0.

Definition 1.6. A fixed point is an unstable node if 7 = 0.

Definition 1.7. A fixed point is a star OR degenerate node if 7> = 4A.
Definition 1.8. A fixed point is an unstable spiral if 0 < 7 < V4A.
Definition 1.9. A fixed point is a stable spiral if —/4A < 7 < 0.

Spirals, (nondegenerate) nodes, and saddles are considered to be hyperbolic
fixed points, which we will explore further in the next section.
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Figure 1: Figure courtesy of Andrew Rudman

2 The Linearization Technique for Nonlinear Sys-
tems (Andrew Rudman)

We consider a general nonlinear system of equations,

&= f(z,y)
{ y=g(z,y) 1)

and we suppose that (z*,y*) is a fixed point (meaning that f(z*,y*) = 0 and
g(z*,y*) = 0). Let

u=z—z% v=y—y*

denote a small disturbance from (z*,y*). Now, to see what happens to this dis-
turbance, we derive differential equations for u and v. Because z* is a constant,

U= Zz.
Then, by substituting into the system (2.1), we have that
u=f(z" +u,y" +v),
which we can expand into its Taylor series:

- * ok 8 * * 8 * *

= 15" F el (@, yt) oo (@t ) + O, w),  (2.)
ox oy

where O(u?,v?,uv) denotes quadratic terms in v and v. These terms are very

small because u and v are small. In the same manner, we derive the differential

equation for v:

. * % @ * ok @ * ok 2,2
0 =g(z ,y)+uaz(m,y)+vay(w ,y") + O(u”, v*, uv) (2.3)



Then the evolution of the disturbance (u,v) can be expressed as

(u):< g(x 9" %(a@ v ) (Z)-i—quadraticterms. (2.4)

v

Definition 2.1. We call the matrix

o of
A= % u
A

the Jacobian matriz at the fixed point (z*,y*).

The quadratic terms in equation (2.4) are so small that it might be a good
idea to throw them out altogether, in which case we would obtain a linearized
system that can be analyzed more simply, such as by methods expounded in
Section 1.

2.0.1 But Can We Neglect the Quadratic Terms?

It depends. If the fixed point is hyperbolic (as discussed in Section 1.3), then it
is safe to do this. The linearized system does give a locally correct phase portrait
around the fixed point if the fixed point for the linearized system is not one of
the borderline cases—a center, a star or degenerate node, or a nonsingular fixed
point (refer to Section 1.3 if necessary). So, if the linearized system predicts a
saddle, node, or spiral, the fixed point is indeed a saddle, node, or spiral for the
original nonlinear system. Therefore, hyperbolic fixed points are very important
and it would be a good idea to get a better understanding of them.

2.1 Hyperbolic Fixed Points

Definition 2.2. A fixed point of an nth-order system is called hyperbolic if
Re(\) #0Vi=1,... ,n.

There is also an important theorem concerning fixed points that we should
know about, but first we must clarify what ”topologically equivalent” means.

Definition 2.3. Topologically equivalent means that there is a homeomorphism
(a continuous deformation with a continuous inverse) that maps one local phase
portrait onto the other, such that trajectories map onto trajectories and the
sense of time is preserved.

With this in mind, we can understand the famous Hartman-Grobman theo-
rem:

Theorem 2.4. The local phase portrait near a hyperbolic fized point is topologi-
cally equivalent to the phase portrait of the linearization, and in fact the stability
type of the fixed point is preserved by the linearization.



2.2 A Counterexample: Why You Should Only Linearize
in the Case of Hyperbolic Fixed Points

Let’s examine the nonlinear system of equations

{ i= —y+az(z?+y?) (2.5)

g= z+ay(z®+y?)

The fixed point of this system occurs at (0,0). By a shortcut to linearization,
we can eliminate the nonlinear terms to get the linearization

0 -1
(2. »
For the matrix A in (2.6), 7 = 0 and A = 1. Therefore, the fixed point (0,0)
is a center, which is nonhyperbolic. To emphasize why linearization should not
be used on this system, let us complete the process.

In this case it is elucidating to express system (2.5) in polar coordinates. We
let x =7cos® and y = rsin ©. Then, r? = 22 + 32 and by the chain rule,

T =zx +yy (2.7

Plugging in the definitions of & and gy from system (2.5) into equation (2.7), we
find that

rr z(y + az(z® +y°)) + y(z + ay(2® + y*))
= —zy+azr’ (2’ +y°) + 2y + ay’(2® + 9°)
a(z? +y?)?

= art.

Therefore,
F=ar’.
To find an expression for ©, we use the substitution
O =tan~! ‘Q‘
x
and find that

szyzyi?’
T

which, after plugging in for £ and g from the system, yields

0=1.

This means that system (2.5) can be written in polar coordinates as

{"e 29



The system, as written in (2.8), makes the reason that we cannot linearize in
this case clear. If a = 0, then the phase portrait consists of concentric circular
trajectories moving in the counterclockwise direction and centered about the
fixed point (0,0). However, if a > 0, then r is increasing and the phase portrait
is a spiral coming out of the fixed point (0,0) (the origin is an unstable spiral).
If a < 0, then r is decreasing and the phase portrait is a spiral coming into
the fixed point (0,0) (the origin is a stable spiral). Trajectories are required to
close perfectly after one cycle, but in this particular case (in which we have a
nonhyperbolic fixed point), the trajectory is thrown off track into a spiral by
the nonnegligible quadratic terms in the nonlinear system. The moral of the
story is that we must ensure that the system has hyperbolic fixed points before
we attempt to linearize it.

3 Conservative Systems (Martin Andersen)

If a particle of mass m is subjected to a nonlinear force F(z), then by Newton’s
law F' = ma, the equation of motion is

m% = F(z).

We make the claim that energy is conserved under the assumption that F' is
independent of both # and ¢t. Let V(z) be the potential energy, with F'(z) =
—%. Substituting, we get

dv
i+ — =0. 1
mi + iz 0 (3.1)

Then, we solve differential equation (3.1) using the integrating factor z:

dV dz 1 .,
—— =/ 0= -md Viz)=FE, (3.2
= [0 gmi V@) =B, (2)
where E is the total energy and is constant as a function of time.

Definition 3.1. A conserved quantity is a real valued continuous function E(Z)

such that % = 0 and E(Z) is nonconstant on every open set. Then, we call a
system for which a conserved quantity exists a conservative system.

3.1 An Example of a Conservative System

Suppose a particle of mass m = 1 is moving in a potential V(z) = —12? + 1a*.
We will now find and classify the fixed points for this system. Clearly, % =
—x + 3. Then, we rewrite our system as

{ P=v (3.3)

y= z—=x



The fixed points of system (3.3) occur at (0,0) and (£1,0) and the Jacobian is

0 1
J_<1—3;z:2 0)'

Evaluated at the fixed point (0, 0), the trace 7 = 0 and the determinant A = —1.
Therefore (0,0) is a saddle. By symmetry at the fixed points (%1, 0), evaluated
at either point 7 = 0 and A = 2. Therefore (+1,0) are centers. As it turns
out, saddles and centers are very common types of fixed points for conservative
systems. In consideration of our discussion in Section 2, we may worry that
the small nonlinear terms could destroy the center predicted by linearization.
But energy conservation saves the day here. The trajectories are closed curves
defined by contours of constant energy:

1 1 1
E— §y2 - 53;2 + Zgz:‘1 = constant

In fact, we even have a theorem asserting this:

Theorem 3.2. (Nonlinear centers for conservative systems) Consider the sys-
tem & = f(x), where x = (x,y) € R2, and f is continuously differentiable.
Suppose there erists a conserved quantity E(x) and suppose that x* is an iso-
lated fized point. If * is a local minimum of E, then all trajectories sufficiently
close to x* are closed.

3.2 Of Particular Interest: Finding the Period of the Duff-
ing Oscillator

Using conservation of energy, we will find the oscillation period of the Duffing
Oscillator

F+z+er®=0, 0<e<1l, z(0)=a,z(0)=0. (3.4)
Then,
Lo.\o Ly €4
Ey, = 5(1‘) +V(z), V(z)= 2% + 2% (3.5)

Plugging the initial conditions from (3.4) into (3.5), we find that

o = %(0)2 +V(a) = %az +5at
Therefore,
(#)? = a? — 22 + g(a4 —at),
This means that
i—f =i=[a® -2+ %(a4 —x4)]%



Separating variables and integrating yields

T(¢) —a dr
dt =2 . 3.6
/0 o V-2t (et —dY) (3:6)

Evaluating the integral on the left-hand side of (3.6) and taking the Taylor
Series of the expression inside the integral on the right hand side, we find that

1

mq/a2,z2 a? — 2

3, T
T(e) = [—arctan( 22— g2 )+ e arctan(w)e
57 4 zva?—22 , 30—
~ 250 arctan(w)e +0(E)],* (3.7
Simplifying (3.7) results in the expression
T(e)=m— §71'a25 + ﬂ71'a4zs2 + 0(e?). (3.8)
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