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Chapter 1

Continuum Mechanics

1.1 Elasticity

1.1.1 References

• Foundations of Solid Mechanics [8]

• Introduction to Continuum Mechanics [14]

• Elasticity, Prof. Gerard Ateshian, Columbia University, E6422, Fall 1999

• Elasticity, Prof. Rene B. Testa, Columbia University, E6315, Spring 2000

1.1.2 Glossary

Gibs Notation: A vector notation which is invariant of coordinate systems.

Summation Convention: the repetition of an index (whether superscript or
subscript) in a term denotes a summation with respect to that index over
its range.

The summation convention can also be used for differentiation.

df =
∂f

∂xi
dxi (1.1)

Range: The range of an index i is the set of n integer values 1 to n.

Dummy Index: an index which is summed over.

Free Index: an index which is not summed over.

Kronecker Delta: δij =
{

1 i = j
0 i �= j

3



4 CHAPTER 1. CONTINUUM MECHANICS

Permutation Symbol: eijk =

 1 even
−1 odd
0 neither

The permutation symbol and the Kronecker Delta are related as follows.

eijkelmk = δilδjm − δimδjl (1.2)

Cartesian Tensors: Covariance and contravariance are equal. The transfor-
mation tensor for cartesian vectors is an orthogonal tensor Q. Orthogonal-
ity preserves the lengths and angles of the transformed vectors. Reflection,
rotation, and translation are orthogonal translations. Also QTQ = I

Contraction: The process of equating and summing a covariant and con-
travariant index of a mixed tensor. the result of contraction is another
tensor, if no free index is left the resulting quantity is a scalar.

∂aβ

∂aα
= δβ

α (1.3)

Quotient Rule: The Quotient Rule can be used to determine if a function is
a tensor without determining the law of transformation directly.

Theorem 1: If [A(i1, i2, i3, . . . , ir)] is a set of functions of the variables
xi, and if the product A(α, i2, i3, . . . , ir)ξα with an arbitrary vector
ξα be a tensor of the type Aj1...jp

k1...kq
(x), then the set A(i1, i2, i3, . . . , ir)

represents a vector of the type Aj1...jp
αk1...kq

(x).

Theorem 2: Similarly, if the product of a set of n2 functions A(α, j) with
an arbitrary tensor Bαk (and summed over α) is a covariant tensor
of rank 2, then A(i, j) represents a tensor of the type Ai

j .

Directional Vector: Given surfaces αi of constant value where the functions
{α1, α2, . . . , αn} can be written as functions of cartesian coordinates {x, y, z, . . .}
(where n is the dimension of the system) and the jacobian is not equal to
zero J = |∇�α| �= 0. Then covarient and contravarient directional vectors
respectively are:

∂xi

∂αj
îi = �gj and

∂αj

∂xi
îj = �gj (1.4)

also the covariant derivative

∇ = �gi
∂

∂αi
(1.5)

Physical Components of a Vector: The base vectors gr and gr are in gen-
eral not unit vectors. Their lengths are:

|gr| =
√
grr, |gr| =

√
grr, r not summed (1.6)
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v =
3∑

r=1

vr√grr
gr√
grr

=
3∑

r=1

vr

√
grr

gr

√
grr

(1.7)

Then, since gr/
√
grr and gr/

√
grr are unit vectors, all components vr

√
grr

and vr√grr (r not summed) will have the same physical dimensions. The
physical components of a vector include the square root of a metric.

Euclidean Metric Tensor: gkm(θ1, θ2, θ3) is a Measure of length in a refer-
ence system.

gkm(θ1, θ2, θ3) =
3∑

i=1

∂xi

∂θk

∂xi

∂θm
. (1.8)

Given a line element dx1, dx2, dx3. The length of the element ds is deter-
mined by Pythagoras’ rule: ds2 = dxidxi = δijdx

idxj and is independent
of the coordinate system. If dx is transformed to another coordinate sys-
tem where xi is a function of new basis vectors (θ1, θ2, θ3). The change
in length dx is related to the transformed coordinate system as follows:
dxi = ∂xi

∂θk
dθk.

Substitute this into Pythagoras’ Theorem.

ds2 =
3∑

i=1

∂xi

∂θk

∂xi

∂θm
dθkdθm = gkmdθ

kdθm (1.9)

Notice, the Euclidean Metric is symmetric gkm = gmk.

Principal Values: The principal values of a tensor lie on the principal planes.
They are the maximum and minimum values of the system. Let v define
a principal axis and let σ be the corresponding principal value. Then the
vector acting on the surface normal to v has components τijvj and the
components of only the principal components σvi.

(τij − σδji)vj = 0 (1.10)

Since τij as a matrix is real and symmetric, therefore there exist three
real-valued principal stresses and a set of orthonormal principal axes.

A solution to v has a nonzero solution if and only if

|τij − σδij | = −σ3 + I1σ
2 − I2σ + I3 = 0 (1.11)

Tensor Invariants: I are the invariants of a tensor.

I1 = τ11 + τ22 + τ33

I2 =
∣∣∣∣ τ22 τ23
τ32 τ33

∣∣∣∣ +
∣∣∣∣ τ11 τ13
τ31 τ33

∣∣∣∣ +
∣∣∣∣ τ11 τ12
τ21 τ11

∣∣∣∣
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I1 =

∣∣∣∣∣∣
τ11 τ12 τ13
τ21 τ22 τ23
τ31 τ32 τ33

∣∣∣∣∣∣ (1.12)

The invariants can also be written in terms of principal values.

Strain Energy: The strain energy W is a scalar function of all the variables
which cause strain in a material. For a linear elastic material it is a linear
function of the strains: ∂W

∂εij
= σij .

1.1.3 Tensors

Scalars, Contravariant Vectors, Covariant Vectors

In nonrelativistic physics there are quantities like mass and length which are
independent of reference coordinates, these quantities are tensors.

Scalars, covariant vector fields, and contravariant vector fields are all exam-
ples of tensors.

Transformations of Tensors

Contravariant Tensor Field of Rank Two, tij:

t̄ij(θ̄1, θ̄2, θ̄3) = tmn(θ1, θ2, θ3)
∂θm

∂θ̄i

∂θn

∂θ̄j
(1.13)

Contravariant Tensor Field of Rank two, tij:

t̄ij(θ̄1, θ̄2, θ̄3) = tmn(θ1, θ2, θ3)
∂θ̄i

∂θm

∂θ̄j

∂θn
(1.14)

Mixed tensor field of Rank Two, tij:

t̄ij(θ̄
1, θ̄2, θ̄3) = tmn (θ1, θ2, θ3)

∂θ̄i

∂θm

∂θn

∂θ̄j
(1.15)
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Transformations of the kronecker delta and permutation symbol tensors in gen-
eral coordinates:

gij =
∂xm

∂θi

∂xn

∂θj
δmn =

∂xn

∂θi

∂xn

∂θj
(1.16)

gij =
∂xi

∂θm

∂xj

∂θn
δmn =

∂xi

∂θn

∂xj

∂θn
(1.17)

gi
j =

∂xi

∂θm

∂xn

∂θj
δm
n = δi

j (1.18)

εijk =
∂xr

∂θi

∂xs

∂θj

∂xt

∂θk
erst = eijk

∣∣∣∣∂xm

∂θn

∣∣∣∣ = eijk
√
g (1.19)

εijk =
∂θi

∂xr

∂θj

∂xs

∂θk

∂xt
erst = eijk

∣∣∣∣∂θm

∂xn

∣∣∣∣ =
eijk

√
g

(1.20)

where g is the value of the determinant |gij | and is positive for any proper
coordinate system g = |gij | > 0.

Tensor fields of higher ranks: A field with contravariant rank p and covari-
ant rank q and the rank of the tensor is r = p + q. The components in
any two coordinate systems is related by.

t̄
α1...αp
β1...βq

=
∂θ̄α1

∂θk1
· · · ∂θ̄

αp

∂θkp
· ∂θ

m1

∂θ̄β1
· · · ∂θ

mq

∂θ̄βq
tk1...kp
m1...mq

(1.21)

Tensor Theorem: Let Aβ1...βs
α1...αr , B

β1...βs
α1...αr be tensors. The equation

Aβ1...βs
α1...αr (θ

1, θ2, . . . , θn) = Bβ1...βs
α1...αr (θ

1, θ2, . . . , θn) (1.22)

is a tensor equation. Thus if it is true in some coordinate system then it
is true in all coordinate systems which are in one-to-one correspondence
with each other.

Tensor Products

The product of tensors is a tensor since it transforms like a tensor.

Dot Product: The dot product reduces the order of the tensors involved: �a ·
�b = ai�gi · bj�gj = aibj(�gi · �gj) = aibi or ai�gi · bi�gj = aibigij .

Cross Product: The cross product preserves the order of the tensors involved:
�a ×�b = aibj(gi × bj). For cartesian coordinates: �a ×�b = εijkaibj�ek. See
the transformation of permutation symbol in the glossary.

Dyadic: The dyadic increases the order of the tensors involved. aibj = Tij
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Covariant Differentiation of Vector Fields

Differentiation in generalized coordinates caries an extra term. Without this
extra term the derivative is not a tensor.

ξi|j =
∂ξi

∂xj
+ Γ(i, j, α)ξα (1.23)

Euclidean Christoffel Symbols:

Γi
αβ(x1, x2, x3) =

1
2
giσ(

∂gσβ

∂xα
+
∂gασ

∂xβ
− ∂gαβ

∂xσ
) (1.24)

The Euclidean Christoffel Symbol does not transform as a tensor. It transforms
as follows:

Γ̄i
αβ(x̄1, x̄2, x̄3) = Γ̄λ

µν(x1, x2, x3)
∂xµ

∂x̄α

∂xν

∂x̄β

∂x̄i

∂xλ
+

∂2xλ

∂x̄α∂x̄β

∂x̄i

∂xλ
(1.25)

Thus,the christoffel term is required for the derivative in general coordinates to
transform as a tensor:

∂ξ̄i

∂x̄a
+ Γ̄i

mαξ̄
m =

(
∂ξλ

∂xµ
+ Γλ

sµξ
s

)
∂xµ

∂x̄α

∂x̄i

∂xλ
(1.26)

Thus, ξi|α is a covariant derivative of a contravariant tensor. The covariant
derivative of a covariant vector field is written as follows.

ξi|a =
∂ξi
∂xα

− Γσ
iαξσ (1.27)

More generally the covariant derivative of a tensor T
α1...αp
β1...βq

of rank p + q,
contravariant of rank p, covariant of rank q can be written as follows

T
α1...αp
β1...βq

|γ =
∂T

α1...αp
β1...βq
∂xγ + Γα1

σγT
σα2...αp
β1β2...βq

+ . . .

Γαp
σγT

α1...αp−1σ
β1...βq−1βq

− Γσ
β1γT

α1α2...αp
σβ2...βq

− . . .

−Γσ
βqγ

T
α1...αp−1αp
β1...βq−1σ (1.28)

This derivative is contravariant of rank p, and covariant of rank q+1. Notice
that the christoffel symbols are zero in the cartesian coordinates.

1.1.4 Kinematics

Lagrangian: description of motion is constructed by following individual par-
ticles particle point of view — Spatial description.

�r = �f l(�x0, t) (1.29)
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Eulerian: description of motion constructed by observing the passage of par-
ticles through a fixed position in space the field point of view — Material
description.

�r = �fe(�x, t) (1.30)

There is a correspondence between the Lagrangian and Eulerian description.
The particle which arrives in the Eulerian observed field at time t can be de-
scribed by its initial condition �x0 (or marker or color) using the Lagrangian
description: xi = f l

i (�x
0, t). The field position is now described in terms of the

markers of the particle and the Eulerian description can be formulated in the
Lagrangian perspective: xi = fe

i (f l
1(�x, t), f

l
2(�x, t), f

l
3(�x, t), t). The Lagrangian

can be solved using an inverse procedure.

Material derivative: must take in account the particles moving in and out of
the reference frame

D

Dt
=

∂

∂t
+ �v · ∇ (1.31)

1.1.5 Kinetics

The Governing Equations of Continuum Mechanics describe the behav-
ior of a body which remains continuous under the action of external forces ( [8]),
and satisfies the following assumptions.

Meso Scale: The material which makes up the body can be described by its
average properties on a scale larger than the micro scale but smaller than
the macro scale ( [21]). For example, average energy remains constant
independent of average or other mean value.

Force at a Point: The limit with respect to the meso scale:

lim
δa→0

δP

δA
= 0, where δP is the net force

that acts on the area δA (1.32)

Moment at a Point: In materials with high stress gradients the moment at
a point cannot be considered. However, for most material the following
limit in the meso scale is acceptable:

lim
δa→0

δM

δA
= 0,

where δM is the net
moment that acts

on the area δA
(1.33)

Materials which do not have this behavior are considered in theorems
related to the Cosserat Medium.

Points on the body can be described with respect to material or spatial
reference systems. Material equations of state describe the body in terms of its
initial configuration (Lagrangian: zk). Spatial equations describe the body in
terms of its final configuration (Eulerian: xa).

In material form the conservation of mass is ρ0 = ρJ so ρ = ρ0
|gij |1/2
|gbc|1/2

∣∣∣ ∂zk

∂xa

∣∣∣.
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Conservation of Mass: Mass can neither be created or destroyed. Thus, the
change of mass in a control volume (cv) is equal to the amount of mass
convected into it through its surface (s) with normal �n.

∂

∂t

∫
cv

ρ dV = −
∫

s

ρ�v · �n dS (1.34)

Using Green’s Theorem and considering that by definition the control vol-
ume does not change with time.

∂ρ

∂t
= −∇ · ρ�v = − �v · ∇ρ + − ρ∇ · �v (1.35)

Dρ
Dt

+ ρ(∇ · �v) = 0. (1.36)

Conservation of Linear Momentum: Surface forces and body forces are
the only sources of linear momentum. The change of linear momentum in
a control volume (cv) is equal to the linear momentum convected into the
volume over its surface (s) described by the normal �n, the traction tensor
(P̃ ) and the body forces (�b).

∂
∂t

∫
cv

ρ�v dV = −
∫
s
(ρ�v) �v · �n dS

+
∫
S
P̃ · �n dS +

∫
cv
ρ�b dV

(1.37)

Following the procedure used for conservation of mass,

∂ρ�v

∂t
= −∇ · (ρ�v�v) +∇ · P̃ + ρ�b (1.38)

Using conservation of mass:

ρ
D�v
Dt

= ∇ · P̃ + ρ�b. (1.39)

Conservation of Angular Momentum: Following the same procedure as for
linear momentum and using previous laws, this conservation law requires
that the stress tensor (P̃ ) be symmetric when it describes a non-Cosserat
Medium.

Conservation of Energy: Energy can neither be created or destroyed only
changed in form. The change of kinetic energy and internal energy (e)
in a control volume (cv) is equal to the work done on the surface by the
traction (P̃ ) and by the body forces (�b) and the heat convected into the
volume and heat created by body(�r) ( [14]).

D
Dt

∫
cv

(ρ v2

2 + ρe) dV =
∫
s
(P̃ · �n) · �v dS

+
∫
cv
ρ�b · �v dV −

∫
s
�q · �n dS +

∫
vc
ρ�r

(1.40)

Using previous equations and methods:

ρ
De
Dt

= tr(P̃∇�v)−∇ · �q + ρ�r. (1.41)
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First Law of Thermodynamics: Using conservation of energy: the system
change in kinetic energy K and potential energy U is equal to the power
P and energy U in the system.

˙̄K + ˙̄U = P̄ + Q̄ (1.42)

Second Law of Thermodynamics: Given in cartesian coordinates:

ρT ˙̄S + qi,i −
1
T
qi,iT,i − ρr ≥ 0 (1.43)

S is the entropy and T is the temperature of the system. A process is
reversible if the right hand side is equal to zero.

Potentials An energy potential is a partial derivative of the total system po-
tential energy with respect to a system variable. In general:

τk =
∂U

∂αk
(1.44)

Helmholz Free Energy: Another representation of the energy potential

A = U − TS (1.45)

The second law of thermodynamics is thus defined as:

σ̃ : ε̃− ρ(Ȧ+ Ṫ S)− 1
T
�q∇T ≥ 0 (1.46)

Energy of an Elastic Body: The potential energy in an elastic body
depends only on the strain and the temperature A(ε̃, T ).
The first law of thermodynamics reduces to: σ̃ − ρ∂A

∂ε̃
= 0.

The second law of thermodynamics reduces to: 1
T �q∇T ≤ 0.

Potential Functions: are used to simplify the description of stress, the
potential of an elastic body. These functions satisfy Equilibrium and
Compatibility conditions automatically. 1 Boundary conditions must
still be considered.

1.1.6 Stress & Strain Definitions

Strain

Strain is defined as elongation per unit length. The displacement vectorr: �u =
�r − �ro + �d. �r0 is the vector to the undeformed �r is the vector to the deformed

1Maxwell Moreial: σ = ∇×Φ×∇; Airy Stress function: σ11 = φ,22, σ22 = φ,11 such that
∇4φ = 0 is the only remaining governing equation; and the Torsion function: σ = ∇ · ψ see
section on St. Venant Torsion. Plane stress and plane strain can also be represented by the
airy stress function using the Beltrami-Michell Equation.
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position. �d is the distance between the origins of the undeformed and deformed
configurations, the origins are fixed.

d�u = d�r − d�r0 and d�u = d�r0 · ∇�u = d�r · ∇�u (1.47)

By definition: the finial configuration is defined in terms of spatial coordinates
�r = zi�gi, while the original is defined in terms of material �r0 = xa�ga. Thus the
change in the displacement vector can be written in terms of its derivative in
the spatial or material coordinate system.

ui|kdzk = dzi − dxa=i (1.48)

ua|bdxb = dzi=a − dxa (1.49)

The strain tensor is a defined quantity. It is described by the changes in length of
the vectors �r0 and �r. Set dl = |dr| and dl0 = |dr0|. This definition is convenient
since it has the propoerties of a metric.

dl2 − dl20 = 2eabdxadxb = 2hkldzkdzl (1.50)

Solving for the Green Strain Tensor and the Cauchy Strain Tensor respectively:

eab(x, t) =
1
2

[
gkl z

k|azl|b − gab

]
hkl(z, t) =

1
2

[
gkl − gab x

a|kxb|l
]
. (1.51)

Notice that eab and hkl are symmetric tensors. In terms of deformation:

eab(x, t) =
1
2

[
uc|au

c|b + ub|a + ua|b
]

hkl(z, t) =
1
2

[
uk|l + ul|k − um|ku

m|l
]

(1.52)
Assuming small displacement gradients eab ≈ hkl.

Stress

Stress is the force per unit area. Traction is the force at a point. The stress
tensor when operated upon the unit normal to a surface reveals the traction on
that surface: σ̃ · �n = �tn. Stress tensors are defined in terms of initial and final
configurations and forces.

name symbol physical characteristic symmetric

P̃ kl final forces on final area yes
Piolla Kirchhoff I S̃ab initial forces on initial area no
Piolla Kirchhoff II t̃ab Sab = talx

b
,l & tal = Sabzl

,b yes

If the stress tensor satisfies static equilibrium in a non-cosserat medium, it is
symmetric. Proof of the symmetry can be shown using the conservation of
angular momentum.
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Constitutive Equations

The relationship between stress and strain is empirically defined. Either it is
assumed to be linear elastic, or the contributions to the strain energy of the
system are assumed to be conservative and dependent only on first order of
strain.

Elastic: Let the strain energy function be defined only in terms of strain and
temperature W (εij , t). Thus strain is defined as follows:

σij =
dW
dεij

=
∂W

∂εij
+
∂W

∂T

∂T

∂εij
(1.53)

Generalized Hooke’s Law: The simplest form of a linear relationship be-
tween stress and strain is:

σij = cijklεkl (1.54)

There are symmetries in the constant. Due to the conservation of angu-
lar momentum σij = σji, similarly cijkl = cjikl. By definition strain is
symmetric εkl = εlk, similarly cijkl = cijlk. Using strain energy defini-
tion cijkl = ∂2W

εijεkl
= ∂2W

εklεij
, thus cijkl = cklij . There are 21 independent

constants in the linear stress strain relationship.

Plane of Symmetry: If a plane of symmetry occurs in a chosen coordinate
system the strain in {x1, x2, x3} is the same as that in {−x1, x2, x3}. The
coordinate transformation between these two coordinate systems:

Q̃ =

−1 0 0
0 1 0
0 0 1

 . (1.55)

The transformation of the constant is as follows:

C̄ijkl = QaiQbjQckQdlCabcd (1.56)

If there is a plane of symmetry C̄ijkl = Cijkl. Thus: C1112 = C1113 =
C1222 = C1223 = C1233 = C1322 = C1323 = C1333 = 0.The number of
independent constants is reduced to 13.

Orthotropic: Using the transformations for the single degree of symmetry it
can be shown that the 21 independent constants are reduced to 9.

Linear Isotropic: Let the strain energy function be defined only in terms of
strain W (εij). In an isotropic system the energy does not depend on
direction. Therefore the strain energy is a function of the invariants of the
strain tensor W (Iε, IIε, IIIε).

σij =
∂W

∂Iε

dIε

dεij
+

∂W

∂IIε

dIIε

dεij
+

∂W

∂IIIε

dIIIε

dεij
(1.57)
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Recall one form of the invariant of a tensor: Iε = εkk; IIε = 1
2εklεkl; IIIε =

1
3εklεlmεmk. Take derivatives to construct:

σij =
∂W

∂εkk
δij +

∂W

∂ 1
2εklεkl

εij +
∂W

∂ 1
3εklεlmεmk

εikεkj = f1δij +f2εij +f3εikεkj

(1.58)
For a linear material there can’t be any nonlinear terms. Thus, f3 = 0.
Similarly f2 must be a constant. Therefore the strain energy function
must be in the form W = C 1

2εklεkl + D. Where C and D are constants.

Finally f1 = ∂ 1
2 εklεkl
∂εnn

= εmm.

σ̃ = λ tr(ε̃)Ĩ + 2µε̃ (1.59)

One Dimensional Analogy: The lamé constants can be found empirically
for any material using experiments, one dimensional experiments are most
conveneint. Then the constants E,G,K, ν are defined:

G =
E

2(1 + ν)
> 0 and K =

E

3(1− 2ν)
> 0 (1.60)

Consequently poisson’s ratio ν is defined in the range −1 < ν < 0.5.

Compatibility:

In a domain ∇× ε̃×∇ = 0. In a multiply connected domain the line integrals
about the openings must be zero. Given ui calculating εij results in a single
value. Thus given εij , ui must be single valued. For two connected points on the
domain an integral along the path connecting P1 and P2 must be path invariant.∫ P2

P1

d�u = �uP2 − �uP1 =
∫ P2

P1

d�r · ∇�u (1.61)

Thus the integral around a closed path must be zero:∫
c1

d�r · ∇�u =
∫

c2

d�r · ∇�u
∮

c1+c2

d�r · ∇�u = 0 (1.62)

Using Stoke’s Theorem, for a singly connected domain∮
d�r · ∇�u =

∫
S

(∇× ε̃×∇)dS = 0 (1.63)

For a multiply connected domain, around each singularity:∮
ci

d�u = 0 (1.64)

The ε̃ is conserved in relation do displacements.

ε̃ =
1
2
(∇�u+ �u∇)
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∇× ε̃ =
1
2
(∇×∇�u+∇× �u∇)

∇× ε̃×∇ =
1
2
(∇× �u∇×∇) = 0 (1.65)

Solvability Condition

According to Kirchhoff ([8], 160)

If either the surface displacements or the surface traction are
given, the solution for the problem of equilibrium of an elastic body...is
unique in the sense that the state of stress (and strain) is determi-
nate without ambiguity, provided that the magnitude of the stress
(or strain) is so small that the strain energy function exists and
remains positive definite.

The proof is by contradiction. Assume that two systems of displacements
u′i and u′′i satisfy

(
∂W
∂eij

)
,i

+ χi = 0 — the equilibrium equation where χi is

the effect of the body forces— and the boundary conditions: Su + Sσ defines
the entire boundary surface; over Su the values of ui are given and over Sσ

the traction �Ti = ∂W
∂eij

vj are specified. Then the difference u′i − u′′i satisfies the
equation ∂W

∂eij ,i
= 0. Using Green’s theorem and integrating over the volume∫

V
ui

(
∂W
∂eij ,i

)
dV = 0.

1.2 Inelasticity

1.2.1 References

• Viscoelasticity [7]

• Theory of Viscoelasticity: An Introduction [3]

• Plasticity Theory [16]

• Notes, Prof. Gautam Dasgupta, Columbia University, Fall 2000

1.2.2 Glossary

Elasticity: The strain energy in an elastic material depends only on the strain
and the temperature.

Inelasticity: The strain energy of an inelastic material depends on the internal
variables including but not limited to strain and temperature.

Heredity: A material whose deformation depends on the history of loading.
According to the axiom of non-reactivity the deformation at the present
time t is due only to the forces that acted in the past, not in the future.



16 CHAPTER 1. CONTINUUM MECHANICS

Viscoelasticity: A viscoelastic material is exhibits time dependent behavior
under the application of stress and strain.

Creep: A creep function c(t) describes the elongation over time produced
by a sudden application of a constant force of unit magnitude at time
t = 0.

Relaxation: A relaxation function k(t) describes the force required to
produce an elongation which changes from zero to unity at time t = 0
and remains at unity thereafter.

Linear Heredity Material: A linear material whose deformation depends on
the history of loading.

Relaxation Function: k(t) the force required to produce an elongate which
changes, at t = 0 from zero to unity and remaining at unity thereafter.

Creep Function: c(t) the elongate produced by a sudden application at t = 0
of a constant force of unit magnitude.

Axiom of non-reactivity: The deformation at the present time t is due only
to forces that acted in the past, not in the future. Thus,

c(t) = 0 & k(t) = 0 (1.66)

Bauschinger Effect: Elongation and compression in a specimen do not gen-
erate the same stresses. This is attributable to a form of residual stress
occurring at grain boundaries ([12]:8).

Plasticity: Inelastic material which exhibits time independent unrecoverable
deformations.

Yield Criteria: The combination of primarily deviatoric stresses which
causes yield in a material.

Flow Potential: A scalar function of the deviatoric stresses and possibly
the flow history. Its derivative in terms of stress times a positive
scalar function gives the flow law.

Flow Law: The rate of change of strain. It is a function of the internal
variables including stress.

1.2.3 Inelastic constitutive relations ([16]: 55-68)

The strain at any point in a body is not completely determined by the current
stress and temperature there as it is in an elastic solid. Thus strain is a function
of stress, temperature and additional internal variables �ξ.

ε̃ = ε̃(σ̃, T, �ξ) (1.67)
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For a rate dependent body the internal variables also define the rate of evolution,
or the equations of evolution

ξ̇α = gα(σ̃, T, �ξ). (1.68)

Unlike for an elastic solid the relation ε̃ = ε̃(σ̃, T, �ξ) can not always be inverted
to find the stress σ̃ = σ̃(ε̃, T, �ξ). But, if it is possible then the equations of
evolution, or rate equations can be described in terms of strain.

ξ̇α = gα(σ̃(ε̃, T, �ξ), T, �ξ) = ḡα(ε̃, T, �ξ). (1.69)

st
re

ss

strain

Plastic Work
Done

ε εp e

For inelastic bodies undergoing infinitesimal deforma-
tion it is possible to decompose elastic and inelastic
strain:

ε̃ = ε̃e + ε̃i (1.70)

Newtonian viscosity used in fluid mechanics is formu-
lated using this superposition: σ̃ = Ktr(ε̃)Ĩ + 2ηε̃v.
Where ε̃v is the viscous strain.

Flow rule from flow potential

It is possible in general to define a flow law or rate equation for ε̃i by assuming
that εi = εi(ξ) and applying the chain rule.

Generalized Potential and Generalized Normality ([16]:66)

Assume that the rate equations can be defined in terms of a potential Ω which
depends only on thermodynamic forces �p

�̇ξ =
∂Ω
∂�p

(1.71)

Using the Gibs function, or the complementary free energy -density χ = ρ−1σ̃ :
ε̃− ψ, where ψ is the Helmholz free energy. The thermodynamic forces are

�p = ρ
∂χ

∂�ξ
and ε̃ = ρ

∂χ

∂σ̃
(1.72)

Now using the cain rule find:

˙̃ε
i
=

∂ε̃

∂�ξ
· �̇ξ =

∂�p

∂σ̃
�̇ξ (1.73)

Using the generalized potential find

˙̃ε
i
=

∂Ω
∂σ̃

(1.74)
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A sufficient condition fo the existence of a generalized potential was found by
Rice in 1971. The condition is that each of the rate functions depend on the
stress only through its own conjugate thermodynamic force �p. It is usually math-
ematically convenient to describe Ω as a convex function of �p. thus for any �p∗

such that Ω(�p∗) ≤ Ω(�p), (p− p∗) · �̇ξ ≥ 0.

Complete stress strain relations ([12])

An additional variable related to the strain rate is the yield surface. Given a
yield criteria in the form

f(J ′
2, J

′
3) = c (1.75)

where f does not depend on strain history.

df =
∂f

∂σ̃
dσ̃ =

∂f

∂J ′
2

dJ ′
2 +

∂f

∂J ′
3

dJ ′
3 (1.76)

To assure that dε̃P is zero for a neutral change in stress assume

dε̃p = G̃df (1.77)

where G̃ is a symmetric tensor. tr(G̃) = 0 since hydrostatic stress does not
produce plastic deformation. Thus G̃ can be written in potential form

G̃ = h
∂g

∂σ̃
(1.78)

Where h and g are scalar functions of the deviatoric invariants and possibly of
the strain-history.

dε̃p = h
∂g

∂σ̃
df. (1.79)

Yield Criteria, Flow Rules and Hardening Rules ([16]:125-140)

It is convenient to write the stress in terms of a deviatoric stress.

S̃ = σ̃ − tr(σ̃)

tr(Ĩ)
Ĩ (1.80)

Also for any yield function f(σ̃, ξ̃) = f̄(s̃, tr(σ̃), ξ̃):

∂f

∂σ̃
=

∂f̄

∂s̃

∂s̃

∂σ̃
+

∂f̄

∂tr(σ̃)
∂tr(σ̃)
∂σ̃

= (¯̃f − 1
3
tr(¯̃f)Ĩ) +

∂f

tr(σ̃)
Ĩ (1.81)

where f̃ = ∂f

∂s̃
.

Initially Isotropic yield Criteria

The yield function f must depend only on the stress invariants of σ̃, provided
that the dependence is symmetric if there is no Bauschinger effect.
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Yield Condition ([2])

Thus, a yield condition for a three dimensional solid can be formulated in terms
of maximum shear. Using Mohr’s circle or other tensor relations the maximum
shear is given as 1

2 |(σI − σII)|, 1
2 |(σII − σIII)|, or 1

2 |(σIII − σI)| where σI , σ2

and σ3 are the principle stresses. The actual yield condition depends on which
of the given shears are negative. This is the Tresca Yield Condition.

Deformation energy may also be used to describe the yield condition. In the
Mises-Hencky criterion

Plastic flow will occur when the distortion-energy density in the
material reaches the value corresponding to the yielding of a simple
tensile specimen ([2],213).

The total strain energy density is U = 1
2 σ̃ : ε̃. For a linear elastic material

σ̃ = λtr(ε̃)+2µε̃. The deformation energy is related to the deviatoric component
of stress and is U∗ = 1

2G (σ̃ : σ̃ − 1
3 (trσ̃)2). For a uniaxial bar U∗ = (σ0)

2

6G . Now
the Mieses-Hencky condition is formulated in terms of the principle components
of stress:

1
12G

[
(σI − σII)2 + (σII − σIII)2 + (σIII − σI)2

]
=

(σ0)2

6G
. (1.82)

Experiments have shown the Mises condition to be more closely correlated to
experimental results.

In general the yield condition of a isotropic body is a function of the second
J2 and third J3invariants of the deviatoric components stress. The first invariant
of stress is related to hydrostatic conditions. Thus in general:

f(J2, J3) = 0. (1.83)

To formulate a plastic stress-strain relation it is convenient to separate the
elastic and plastic components of strain ε̃ = ε̃e + ε̃p. Note the the plastic
component is assumed to be unchanged during plastic deformation so tr(εp) = 0.

Hardening Rules

st
re

ss

strain

hardening softening

ε εp e

Hardening Rules: a specification of the dependence
of the yield criterion on the internal variables,
along with the rate equations of these variables.

Isotropic hardening [16]

Yield functions can be reduced to the form:

f(σ̃, ξ) = F (σ̃)− k(�ξ) (1.84)
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Since only the yield stress is a function of the internal variables. The function h̃
corresponds to the internal variables �ξ. So the plastic modulus H can be defined
as

H =

{
k′(Wp)σ̃ : h̃

k′(ε̄p)
√

2
3 h̃ : h̃

(1.85)

1.2.4 Viscoplasticity ( [16]:102–110)

Yield surface

Figure 1.1: Yield Surfaces for Different Cross-Sections in Torsion

The yield surface separates regions where inelastic strain-rate tensor is zero
and where it is not zero. In terms of yield function f(·), the yield surface is
defined by f(σ̃, T, �ξ) = 0.

Drucker’s Postulate

If a unit volume of an elastic-plastic specimen under uniaxial
stress is initially at stress σ̃ and plastic strain at ε̃P and an ”external
agency” slowly applies an incremental load resulting in a stress incre-
ment dσ̃ and subsequently removes it then dσ̃ : dε̃ = dσ : (dε̃e+dε̃P )
is the work performed by the external agency in the course of incre-
mental loading and dσ̃ : dεP is the work performed in the course of
the cycle consisting of the application and removal of the incremental
stress.

A stable or work-hardened material is one in which the work done in an
incremental loading is positive and the loading- unloading cycle is non-negative.
The plastic strain increment dWp is essentially positive since plastic distortion
is an irreversible process in the thermodynamic sense. In general

dσ̃ : dε̃ > 0 and dσ̃ : dε̃P ≥ 0 and Wp =
∫

σijdεPij . (1.86)

For both work hardened and perfectly plastic material Drucker’s Inequality
holds

σ̇ : ε̇P ≥ 0 (1.87)
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The plastic strain rate can not act opposite to the stress rate. In general for a
complete loading σ̃ and unloading cycle σ̃∗:

(σ̃ − σ̃∗)ε̇P ≥ 0 (1.88)

This is also know as the postulate of maximum plastic dissipation ([16],118).

Figure 1.2: Drucker’s Postulate and concavity

Consequences of the Maximum-Dissipation Postulate

If a yield surface is everywhere smooth, that is a well-defined tangent plane
and normal direction exist at every point. For the inequality to be valid for all
stresses inside the tangent line the rate of plastic strain must be directed along
the outward normal associated with the tangent point. If there are any stresses
lying on the outward side of the tangent the inequality is violated, that is the
yield surface in stress space is convex.

1.2.5 Rate-independent plasticity ([16]: 112–140)

A perfectly plastic material is neither a function of time nor material imper-
fections. Thus it does not creep, relax, or exhibit Bauschinger’s effect. The
behavior of such a material depends on a yield function and its correspond-
ing yield surface. Any change in the strain after yielding is a function only of
hardening or softening of the material. The hardening is related to the plastic
potential.

The Ideal Plastic Body

• Time Independent — No creep or relaxation

• No non-uniformity in the microscale and resulting differential hardening
(Bauschinger Effect)

• no side effects to plastic behavior
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Figure 1.3: Possible Stress Strain relation for Steel

Yield Criteria: A law which defines the limit of elasticity under any possible
combination of stress components. Assume for a plastic body yielding
depends only on the deviatoric components of stress.

σ̃′ = σ̃ − tr(σ̃)

tr(Ĩ)
Ĩ (1.89)

For an isotropic material which depends only on the invariants of the deviatoric
stress tensor, the yield criteria depends only on J ′

2 = 1
2 σ̃

′ : σ̃′ and J ′
3 = 1

2 σ̃
′ :

(σ̃′ · σ̃′). To allow for symmetry the yield function must be an even function of
J ′

3

Introduction to Plasticity ([2]: 206–280)

The stress-strain relation under uniaxial loading condition can be found experi-
mentally. For example the behavior of a thin specimen of steel may be similar to
figure 1.3. Notice when yielding is reached σy the behavior changes, the relation
between stress and strain does not follow σ = Eε as for the purely linear case.
One representation constructed by matching experimental stress-strain curves
is the Ramberg-Osgood Relation

ε =
σ

E
+

( σ

B

)n

. (1.90)

For a perfectly plastic material σ = σy. Observations of experiments seem
to show that plastic deformation is related only to shear stresses and not to
hydrostatic pressure.

Plastic Potential

The plastic potential g(σij) defines the ratios of components of plastic strain
increments. If it is equal to f(σij), the function which defines the yield locus.
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In this condition the constant contours of the plastic potential define the yield
locus.

dεPij = h
∂f

∂σij
df (1.91)

Note that f must be independent of hydrostatic pressure if the plastic volume
change is zero.

∂f

∂σii
= 0 (1.92)

Also, if the function f is an even function — there is no Bauschinger effect, then
the reversal of the sign of the stress reverses the sign of the stress increment.
This the case for the Lévy-Mises or Reuss equations where f = g = J ′

2 = 1
2σ

′
ijσ

′
ij

and ∂f
∂σij

= σ′
ij .

Such an even, independent function f can be used inversely to find a unique
plastic state of stress arising from a given plastic strain increment dεPij . Let σ∗

ij

be any other plastic state of stress

f(σ∗
ij) = f(σij) = c (1.93)

The work done by this dεPij in the strain dεPij is dW ∗
p = σ∗

ijdε
P
ij . The stationary

value for varying plastic states σ∗
ij is when

∂

∂σ∗
ij

(σ∗
ijdε

P
ij − f(σ∗

ij)dλ) = 0 (1.94)

where, using Lagrange’s method, a constant multiplier dλ has been added.
Thus:

dεPij = dλ
∂f(σ∗

ij)
∂σ∗

ij

. (1.95)

And dλ = hdf .

1.2.6 Viscoelasticity

Models for creep and relaxation functions of Linear Viscoelastic Ma-
terial [8]

Bolzmann solid viscoelastic materials retain linearity between load and deflec-
tion, but the linear relationship depends on a third parameter time. For this
class of material the present state of deformation can not be determined com-
pletely unless the entire history of loading is known.

A one dimensional simple bar made of such a material behaves as follows
when fixed at one end and subjected to a force in the direction of the axis at
the the other end.

du(t) = c(t− τ)
dF

dt
(τ)dτ (1.96)

Here the force at time t is F (t) and it is continuous and differentiable. In
the small time period dτ the change in loading is dF

dt dτ . Thus, the change in
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elongation of the bar du(t) is proportional to the time interval (t− T ) and the
increase in force.

If the origin of time is the beginning of motion and loading the equations
above can be integrated to derive the Ludwig Bolzmann (1844-1906) constitutive
equations.

u(t) =
∫ t

0

c(t− τ)
dF

dt
(τ)dτ (1.97)

similarly

F (t) =
∫ t

0

k(t− τ)
du

dt
(τ)dτ (1.98)

Vito Voltera (1860-1940) extended this formulation —coining the term hered-
ity law— for any functional relation of the type of the Bolzmann equation.

Viscoelasticity can be modeled with springs and dampers
Maxwell model: Voigt model: Standard Linear model:

MODEL

µη

F

η

µ

F

η

µ2

µ1

F

FORCE
& DIS-
PLACE-
MENT

u̇ = Ḟ
µ + F

η F = µu+ ηu̇ F + τηḞ = ER(u+ τσu̇)

INITIAL
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TION

u(0) = F (0)
µ u(0) = 0 τηF (0) = ERτσu(0)

CREEP c(t) =
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1
µ + 1

η

)
= 1(t) c(t) = 1

µ (1− e−(µη )t)1(t) c(t) =
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Where δ(t) is the Dirac-delta function, and 1(t) is the unit step function and
τη and τσ are constants.

Structural Problems of Viscoelastic Materials [8]

Generalized Hook load-displacement law using hereditary law.

ui =
n∑

j=1

∫ t

0

Cij(t− τ)
d

dτ
Fj(τ)dτ, i = 1, . . . , n. (1.99)

Cij(t) is the creep function, the deflection ui(t) produced by a unit step function
Fj(t) = 1(t) acting at the point j. These creep functions are not always easy to
deduce or measure.

Multiaxial behavior of viscoelastic material

The creep and relaxation functions can be formulated as fourth order tensors.
If the material is isotropic then only two constants are needed to describe the
behavior. Notice that internal variables are not required in this representation.

General Viscoelastic models ([3]: 9–14)

According to the hypothesis of fading memory the creep or relaxation effect

decrease over time. Thus a the fourth-order relaxation function ˜̃
G(t) or a fourth-

order creep function ˜̃
J(t) are continuously decreasing as a function of time.∣∣∣∣∣∣d

˜̃
G(t)
dt

∣∣∣∣∣∣
t=t1

≤

∣∣∣∣∣∣d
˜̃
G(t)
dt

∣∣∣∣∣∣
t=t2

and

∣∣∣∣∣∣d
˜̃
J(t)
dt

∣∣∣∣∣∣
t=t1

≤

∣∣∣∣∣∣d
˜̃
J(t)
dt

∣∣∣∣∣∣
t=t2

for t1 > t2 > 0

(1.100)
The difference between a viscoelastic solid and a viscoelastic fluid stated

physically are: When a viscoelastic fluid is subjected to a fixed simple shear state
of stress it responds with a steady state flow after the transient effects have died
out, also when a fluid is subjected to a fixed simple shear state of deformation
the shear stress state will eventually decay to zero: limt→∞G1(t) = 0. When a
viscoelastic solid is subjected to a simple shear state of deformation, it will have
a component of stress which remains nonzero as long as the state of deformation
is maintained: limt→∞G1(t) = C where C is a nonzero constant.

Subject a viscoelastic material to a simple shear state of deformation speci-
fied by the displacement components from the fixed reference configuration as:

u1(�x, t) = ûX2h(t) u2 = u3 = 0 (1.101)

where h(t) is the unit step function. Using the infinitesimal strain displacement
relations

ε̃ =
1
2

(
∇ 1X�u+ �u∇ 1X

)
. (1.102)
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The only nonzero relation between the components of stress and strain in a
simple shear in cartesian coordinates is

s12(t) =
[
G1(t)

2

]
û (1.103)

where Gijkl(t) = 1
3 [G2(t)−G1(t)]δijδkl+ 1

2 [G1(t)(δikδjl+δilδjk)]. In an isotropic
material the fourth order tensor is defined by two independent constants. De-
viatoric stress in general is s̃ =

∫ t

−∞G1(t − τ) dẽ
dτ dτ , where ẽ is the deviatoric

component of strain and strain σ̃ =
∫ t

−∞G2(t − τ) d̃ε
dτ dτ . Similar relations are

formed using the creep functions. The relaxation function G1(t) = 0 for t < 0.

1.2.7 Waves and Harmonic Response in Inelastic Material

One-dimensional plastic waves ([16]: 409–420)

If the propagation of longitudinal stress strain waves can be represented by
a one-dimensional model. The inertia terms can be ignored, since the wave
propagation problem is analogous to a creeping fluid problem where using scaling
and Reynolds number it can be shown that the inertia term is relatively small
compared with the viscous effects or shear stress. This assumption is not good
near the ends of the bar.

Given x a Lagrangian coordinate along the x−axis, the corresponding small
displacement strain ε and velocity v are:

ε =
∂u

∂x
and v =

∂u

∂t
(1.104)

According to the kinematic compatibility relation:

∂ε

∂t
=

∂v

∂x
. (1.105)

The equations of motion in the absence of body force reduce to:

∂σ

∂x
= ρ

∂v

∂t
(1.106)

Where σ is the nominal uniaxial stress and ρ is the mass density in the un-
deformed state. This reasoning can also be applied to the torsional problem.

V V
+ -

h

ξ(t)

If the front is moving at a finite speed c in
the positive x− direction c = α′(t) > 0 then
the jump in the velocity v can be defined as
in terms of the jump, or approximated with
respect to a shock thickness h and the partial
derivatives of the velocity v:

[v] = v− − v+ [v] ≈ ±h∂v
∂x

[v] ≈ ±h

c

∂v

∂t
.

(1.107)
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Stress and strain jumps at the shock front can be defined in terms of these
relations:

[ε] = ±1
c
[v], [σ] = ±ρc[v] and ρc2 =

[σ]
[ε]

(1.108)

Notice that the final ratio depends only on the density and the wave speed not
the velocity or the shock width.

Shock Front: occurs at a point x = α(t) on a bar the velocity v is discontin-
uous.

Shock-speed equation: The ratio between the jump in stress and the jump
in strain.

ρc2 =
[σ]
[ε]

(1.109)

Harmonic response ([4])

In steady-state harmonic oscillations every forcing and response function is of
the form

g(�x, t) = ḡ(�x,w)eiwt. (1.110)

In general ḡ can be a complex function. Correspondingly, for an isotropic vis-
coelastic body the Lamé constants are also frequency dependent λ(w) and µ(w).
If the viscoelastic characteristics of material can be assumed to be identical in
bulk and shear then, the ratio of the frequency dependent constants is not a
function of frequency, The bulk modulus is not a function of frequency:

λ(w)
µ(w)

= K =
2ν

(1− 2ν)
. (1.111)

For a Voigt Solid the energy loss per cycle of harmonic vibration is propor-
tional to the excitation frequency, in a constant hysteretic solid the energy loss
is independent of the frequency. The damping in a hysteretic solid can then be
uncoupled in a multi degree of freedom system, as for structural or rate inde-
pendent linear damping. The dynamic stiffness influence coefficients for Voigt
and constant hysteretic solids can be found using the frequency dependent con-
stitutive descriptions.

Viscoelastic correspondence principle ([3]: 187–221)

If a frequency response function of an elastic system is known, then the corre-
sponding viscoelastic frequency response may be obtained from it directly.

Wave propagation in viscoelastic material on semi-infinite and infinite do-
mains can be solved by integral transform, finite domain problems are far more
complicated. Applying the findings from the infinite domains to large finite
domains is usefully for practical problems.
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Isothermal Wave Propagation

As for one-dimensional plastic waves, the stress-strain behavior about the strain
discontinuity or shock front is used to solve the wave problem. As for the one-
dimensional problem, the jump properties can be defined in terms of a jump
width h, and the conservation of linear momentum can be applied across the
jump.

The uniaxial viscoelastic constitutive relation is

σ(x, t) =
∫ t

−∞
E(t− τ)

∂ε(x, τ)
∂τ

dτ. (1.112)

Integrate by parts and substitute into the conservation of linear momentum[
E(0)

∂u(x, t)
∂x

+
∫ t

−∞

∂

∂t
E(t− τ)

∂u(x, τ)
∂x

dτ
]

= −ρv
[
∂u(x, t)

∂t

]
(1.113)

Applying the strain displacement relation and assuming dE(t)
dt is bounded and

continuous on 0 ≤ t ≤ ∞ then the integral term contributes nothing to the
jump and, as for plastic waves:

E(0)
[
∂u(x, t)
∂x

]
= −ρv

[
∂u(x, t)

∂t

]
(1.114)

Using kinematic compatibility as before the speed of propagation is given by
v = [E(0)/ρ]

1
2 as in equation 1.108.

The result can also be found using the Laplace Transform.

∂σ(x, t)
∂x

= ρ
∂2u(x, t)

∂t2
using the transform sE(s)

∂ε̄(x, s)
∂x

= ρs2ū(x, s)

(1.115)
The rod is initially assumed to be at rest

∂2ū

∂x2
− ρs

Ē(s)
ū = 0 (1.116)

Taking the transform of the viscoelastic strain displacement relation

∂2σ̄

∂x2
− ρs

Ē(s)
σ̄ = 0 (1.117)

The same equation results from the laplace transform of strain, noticing that
the particle velocity v̄ = sū. The general solution of the equations is given by

(σ̄, ε̄, ū, v̄) = A(s)eΩ(s)x +B(s)e−Ω(s)x where Ω(s) =
[
ρs/Ē(s)

] 1
2 (1.118)

Here A(s) and B(s) are determined by the boundary conditions.
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Reflection of Harmonic Waves

The fourier transformed equation of motion for an isotropic solid is is:

µ∗(iw)∇2ū + [λ∗(iw) + µ∗(iw)]∇(∇ · ū) = −ρw2ū. (1.119)

These equations are uncouples since the inertial terms can be neglected. The
resulting equations of motions are

µ∗∇2ū = −ρw2ū and (λ∗ + 2µ∗)∇2ū = −ρw2ū. (1.120)

These equations govern the propagation of shear S and irrotational P waves
respectively.

Sinusoidal Oscillations in a Viscoelastic Material [8]

Assume a body is forced to perform simple harmonic oscillations. To find the
steady state response assume that the forcing function has been acting on the
body for an indefinitely longtime and that all initial transient disturbances have
died out. Substitute t− τ = ξ into equation (1.14).

u(t) =
∫ ∞

0

c(ξ)
dF

dt
(t− ξ)dξ (1.121)

This equation is true for any Bolzmann material excited with any function
F (x). When the forcing function is a simple harmonic oscillation the following
equation is true F (t) = F0e

iwt.

u(t) =
∫ ∞

0

c(ξ)iwF0e
iw(t−τ)dξ

= iwFoe
iwt

∫ ∞

0

c(ξ)e−iwtdτ (1.122)

Since c(t)=0 when t¡0, replace the lower limit of the integral by −∞ and writhe
the integral in the conventional form of the fourier transformation.

c̄ =
∫ ∞

−∞
c(τ)e−iwτdτ (1.123)

Assuming that the fourier integral exists,

u(t) = iwF0c̄(w)eiwτ = u0e
iwτ (1.124)

Thus, the ratio u0/F0 is a complex number and may be written as

u0

F0
=

1
M = iwc̄(w) = |wc̄(w)|e−iδ. (1.125)

Where M is called the complex modulus of viscoelastic material. The angle δ
is the phase angle by which the strain lags the stress. the tangent of δ is used
to measure the internal friction of a linear viscoelastic material.

tan δ =
imaginary part of M

real part of M (1.126)
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also,
F0

u0
= M = iwk̄(w) (1.127)

where k̄(w) is the Fourier transform of the relaxation function

k̄ =
∫ ∞

−∞
k(τ)e−iwτdτ. (1.128)

the relation between c̄(w) and k̄(w) is

−w2c̄(w)k̄(w) = 1. (1.129)

1.3 Mechanics of Solids

1.3.1 References

• Elasticity [19]

• Variational Calculus [15]

• Mechanics of Solids, Prof. Rene B. Testa, CU E4113, Fall 1998

1.3.2 Glossary

Plane Strain: the depth components of strain are non-existent. ε33 = ε13 =
ε23 = 0. A good approximation for rigid surfaces.

Plane Stress: the depth components of stress are non-existent. σ33 = σ13 =
σ23 = 0. A good approximation for soft surfaces.

Curvature: κ(x) = −w,xx where w is the displacement normal to the x axis.

Center of Gravity: body forces act through the center of gravity of an object.

ȳ =

∫
A
ydA∫

A
dA

(1.130)

Moment of Inertia:

Iyy =
∫

A

y2dA and Ixy =
∫

A

xydA (1.131)

Rotational Moment of Inertia:

J =
∫

A

r2dA (1.132)
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1.3.3 Theory

Elasticity

The governing equations for mechanics of solids are derived from continuum
mechanics. In mechanics of solids elasticity theory is applied to solid objects.
Concepts of stress, deformation and constitutive equations are used directly.
Also, solvability conditions are used to prescribe the boundary conditions.

These equations:

• Strain displacement equations

ε̃ =
1
2
(∇�u+ �u∇) (1.133)

• Conservation of linear momentum - Equilibrium

∇ · σ̃ + �f = ρ�̈u (1.134)

• Constitutive (Linear Elastic)

σ̃ = λtr(ε̃)Ĩ + 2µε̃ (1.135)

• Compatibility
∇× ε×∇ = 0 (1.136)

Simplifications of these equations are used to solve problems involving solids

Variational Calculus

Consider a function with fixed endpoints x(t0) = x0 and x(t1) = x1 which is a
piceswise smooth scalar function defined for all t ∈ [t0, t1]. There exists a scalar
function of this function x(·) , its derivative ẋ(·) and time t: f [t, x, ẋ] which
is also defined throughout the entire interval t ∈ [t0, t1]. It is convenient that
this new function f(·) is continuous and contains as many partial derivatives as
necessary. The functional J(·) is now the sum of f(·) over the range of t.

J(x(·))=̂
∫ t1

t0

f [t, x(t), ẋ(t)]dt (1.137)

The global absolute minimum of J(·) occurs at x∗ if and only if J(x ∗ (·)) ≤
J(x(·)) ∀x ∈ {domain}. The local minimum of the integral occurs at x∗

if within the immediate neighborhood of x∗ the values of J(·) are greater than
those at x∗. At a local minimum — a global minimimum is also a local minimum
– the rate of change of the functional is zero, the function is stationary.

Using various theorems of the calculus of variations presented in the book
the Euler-Lagrange form can be derived

f,x = f,ẋtẋ
∗(t) + f,ẋẋẍ

∗(t) ∀t ∈ I (1.138)
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Where I is the domain on which all the derivatives are continuous.
For mechanics problems the inverse function is of primary importance. If

the function x(t) = g(t, α, β) is written in terms of a two paramater function,
find the integrands f(·) which make the function J(·) stable. Assume that there
exist continuous functions φ(·) and ψ(·) to eliminate the constants.

x(t) = g[t, φ(t, x(t), ẋ(t)), ψ(t, x(t), ẋ(t))]
ẋ(t) = gt[t, φ(t, x(t), ẋ(t)), ψ(t, x(t), ẋ(t))] (1.139)

Then ẍ(t) = G[t, x(t).ẋ(t)] = gtt[t, φ(t, x(t), ẋ(t)), ψ(t, x(t), ẋ(t))]. And

f,x − f,ẋt − ẋ(t)f,ẋx = Gf,ẋẋ (1.140)

This solution must hold for every initial condition {x[t0], ẋ[t0]}.
Letting M(t, x, ẋ)=̂f,ẋẋ(t, x, ẋ). And assuming that the derivative operation

is linear f,xr = f,rx, then

M,t + ẋM,x +GM,ẋ +G,ẋM = 0 (1.141)

The general solution to this pde is M = Φ
Θ . Where Φ is differentialbe nonzero

but otherwise arbitrary and

Θ=̂ exp
{∫

G,ẋ [t, g(t, α, β), gt(t, α, β)] dt
}

(1.142)

Finally functions f(·) can be found by integrating

f(t, x, ẋ) =
∫ ẋ

0

∫ q

0

M(t, x, p)dpdq + ẋλ(t, x) + µ(t, x) (1.143)

Where λ(·) and µ(·) are otherwise arbitrary functions which satisfy the conti-
nuity conditions and are defined on the required domain.

1.3.4 Applications

One Dimensional

In a bar under uniaxial loading the the stress is σ = F
A . The loading is constant

along the bar. The displacement is related to the stress by the constitutive
relationship: σ = Eε. By definition ε = u,x.

Orthotropic Material

A one dimensional force applied to an orthotropic material exhibits the follow-
ing. The forces on the matrix and on the fiber Amσm = Pm and Afσf =
Pf . Using this separation P = AmEmεm + AfEf εf = εaveAmEm + A +
fEf ) = P

AEx
(AmEm + AfEf ). The bulk modulus can be rewritten as Ex =

Am

A Em + Af

A Ef . This is the basis for the law of mixtures: Ex = (1− ν)Em +
νEf .
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Airy stress function

The AIRY stress function φ describes two
dimensional linear elastic small deforma-
tion plane stress or plane strain problems.

σx = φ,yy

σy = φ,xx

τxy = −φ,xy (1.144)

From axially symmetric stress equilibrium: ∇2(σx + σy) = 0. For axially
symmetric problems: ∇2∇2φ = 0. The solution to this partial differential
equation must satisfy the stress boundary conditions.

Elementary Beam Theory

Elementary beam theory can also be formulated as a two dimensional problem.
The following assumptions are made: (1) plane sections remain planar,(2) small
deformation.

From axial equilibrium: σx,x + τ,y = 0.∫
A

(σx,xy + τ,yy)dA = 0;
∂

∂x

∫
A

y σxdA = −
∫

A

y τ,ydA (1.145)

The shear stress is assumed to be constant over the width of the beam:

M =
∫

A

y σxdA; −b
∫ ymax

ymin

y τ,ydy = −b(y τ)|ymax
ymin +

∫
A

τdA = 0+V (1.146)

V = M,x

From vertical equilibrium: σy,y + τ,x = 0.
Using assumption that plane sections remain planar.∫

A

σy,ydy = −
∫

A

τ,xdA = − ∂

∂x

∫
A

τ dA (1.147)

P = −V,x

The deformation is assumed to be linear in y so the solution must be in the
following form:

u(x, y) = C1(x)y + C2(x) (1.148)

By definition the strain in the axial direction is:

εx = u, x = C ′
1(x)y + C ′

2(x) = κ(x)y (1.149)

Where κ is the curvature or the bar at x, thus by definition κ = −w′′ and
εx = −w′′y. In basic elastic beam theory the shear deformation is zero: γ =
u,y + u,x = 0. In the uniaxial case from the constitutive equation: σx = E εx =
−Ew′′y. Recall relation to moment, and assuming the curvature is constant
over the area.

M = −
∫

A

Ey2w′′dA = −EIw′′ (1.150)
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The shear displacement is inconsistent because of the assumptions. Using
τ = Gγ one would assume that τ = 0 because γ = 0, but this violates local
equilibrium in x.

σx,x + τ,y =
M ′y

I
+ τ,y = 0; τ,y =

V y

I
; τ =

V Q

b I
(1.151)

Compatibility is also unsatisfied in simple beam theory.

Timoshenko Beam Theory

The plane sections are still assumed to remain planar, but it is allowed a rotation
ψ. Also, the shear deformation at the neutral is defined by γNA = w′ − ψ.

From shear equilibrium: γxy = u,y + w,x. Define the shear τ separately at
the neutral axis to avoid the inconsistency of simple beam theory: τxy = Gγxy

and τNA = GγNA. Using the mean value theorem, the shear can be written as
follows.

V =
∫

A

τxydA =
∫

A

GγxydA = τaveA = GγaveA (1.152)

Define a constant k such that τave = k τNA.

V = kGA(w′ − ψ) (1.153)

Using the definition of rotation of a plane section: εx = yψ′. Using the definition
of the moment and the constitutive equation:

M =
∫

A

yσxdA =
∫

A

Ey2ψ′dA = −EIψ′ = −EI(− V ′

kGA
+ w′′) (1.154)

w′′ =
−P
kGA

− M

EI
; EIw′′ = − EI

kGA
P −M ; EIwIV +

EI
kGA

P ′′ = P (1.155)

The relationship between the applied force P and the vertical displacement w
is thus represented by a PDE and not an ODE. Still the approximation is not
entirely valid since it assumes a shear force on the surface of the object which
does not satisfy the free surface boundary condition.

Torsion

For a prismatic bar whose longitudinal axis is the x3–axis and whose cross-
section is simply connected and defined by a closed curve C in the x1x2–plane.
Simple theory assumes no warping is only valid for circular sections. Assump-
tion (1) no warping: uniform twist per unit length. θ(x) = φ(x)

L = φ,x. Thus,
γ = rφ, τ = Tr

J and φ = T
GJ .

at x3 = 0 : u1 = u2 = 0, σ33 = 0
at x3 = L : u1 = −θLx2, u2 = θLx1, σ33 = 0;

on C, 0 < x3 < L : Ti = σijnj = σiαnα = 0, where n1 = x2,s , n2 = −x1,s
(1.156)
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St. Venant Torsion

Assume (1) the shape of the section does not change (2) the twist is uniform
φ(x) = θx. Solve from the boundary conditions. First consider the torque alone
Pure Torsion, then restrain u(x) and develop σx as Restrained Warping Tension.

Warping (ψ): ux(y, z) = −ψxz and uZ(y, z) = ψxy. The applied torque is
T = Mx.

The boundary conditions in the case of pure torsion result in the following.

dx

dy �

ds
τ

τ

τ

τ

�
xn

xy

xz xs

τxn = τxy
dz

ds
− τxz

dy

ds
(1.157)

τxs = τxz
dz

ds
+ τxy

dy

ds
(1.158)

= (ux,y − θz)
dz

ds
+ (ux,z + θy)

dy

ds
(1.159)

Thermal Stresses

Thermal expansion or contraction causes strain without stress unless the bound-
ary conditions inhibit the movement. A uniform temperature related strain is
usually due to constraint of the ends. Linear stress related to temperature is usu-
ally related to curvatures, movements or external restrains. Non-linear stresses
related to temperature are usually self equilibrating over the cross section.

For a restrained axial bar ∆L = P+Pt
AE L. Restrained flexure M ′′ − P and

w′′ = −M+MT

EI . Stress can thus be written as σx = M+MT

I y + P+PT
A − αET .

Where α is a coefficient of volume change. Stress occurs only if volume change
is restrained. Using boundary conditions and the relationship ±V = ±M ′ =
∓(EIw′′ + MT )′. For a statically determinant beam with no applied forces
w′′ = MT

EI solving MT =
∫
A
αEIydA. The Airy stress function related to

restrained volumetric expansion is ∇4 = −αE∇2T .

Pressure Vessels

An axisymmmetric pressure vessel endures only hydrostatic stresses. From equi-
librium

dσr

dr
+
σr − σt

r
= 0 (1.160)

Where σr is the radial stress and σt is the tangential or hoop stress. From
geometric compatability the hoop strain and tangential strain are related

εr =

(
U + du

dr dr
)
− u

dr
=

du
dr

and εt =
2π(r + u)− 2πr

2πr
=

u

r
(1.161)

Apply the constitutive relation for linear elastic isotropic material and find:

d2u

dr2
+

1
r

du
dr

− u

r2
= 0 (1.162)
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Solve by applying the boundary conditions of either displacement or traction.



Chapter 2

Applied Mechanics

2.1 Fluid Mechanics

2.1.1 References

• Physical Fluid Dynamics [21]

• Mechanics of Fluids [18]

• Physics of Fluids, Prof. Adam Sobel, CU E4200, Fall 1999

• Mechanics of Fluids, Prof. Rene Chevray, CU E6100, Fall 2000

2.1.2 Glossary

Steady Motion: If at various points of flow all quantities (velocity, density ...)
associated with the flow remain unchanged with time.

Unsteady Motion: not steady motion.

Streamline: at time instant (t1) the line is parallel to the velocity field �v(t1).

Pathline: line described one particle as time passes (trajectory).

Streakline: a line which joins all particles at t = t1 which passes through a
given point at previous time t ≤ t1.

Timeline: a line which connects particles at time t1 that passed through a line
at time t0.

The rate of deformation tensor: D̃ = ∇�u. Divide the second order tensor
into its symmetric and asymmetric parts.

D̃ =
1
2
(D̃ + D̃T ) +

1
2
(D̃ − D̃T ) (2.1)

37
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The rate of strain tensor: is the symmetric part: Ẽ = ∇�u+ �u∇.

Vorticity: is related to the asymmetric part: (∇�u− �u∇), the vorticity can be
written as a a vector: �Ω = ∇× �u also Ωk = eijk( ∂ui

∂xj
+ ∂uj

∂xi
).

Circulation: By mass flux analogy consider a surface inside a contour c. Deriva-
tion using Stokke’s theorem.

Γ =
∫

A

�Ω · dA =
∫

A

(∇× �v) · dA =
∮

S

�v · dS (2.2)

System: A system consists of a definite number of particles with a definite
mass and it is distinguished from all other matter — its surroundings.

Control Volume: A control volume is a fixed region in space.

2.1.3 Summary of Equations of Motion

Conservation of Mass

The rate of inflow across the surface is equal to the rate of increase of the mass
inside.

−
∮

(ρ�u) · �ndA =
d

dt

∫
ρdV (2.3)

∇ · �u = 0 for incompressible flow (2.4)

Dρ

Dt
+ ρ(∇ · �u) = 0 in general (2.5)

Conservation of Momentum

The surface force and the body force is equal to the time rate of change in
momentum energy and the net outflow of momentum across the surface.

−
∮

p�ndA+
∮

S̃ · �ndA+
∫
�fρdV =

d

dt

∫
ρ�udV +

∮
�u(ρ�u · �n)dA (2.6)

p is the pressure acting on the fluid particle. S̃ is the stress not associated with
pressure. And f is the body force.

D�u

Dt
= −1

ρ
∇p +�f for inviscid incompressible flow (2.7)

D�u

Dt
= −1

ρ
∇p +

1
ρ
∇ · S̃ +�f in general (2.8)
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Conservation of Energy

for incompressible inviscid flow D �u·�u
2

Dt Material Change in Kinetic Energy. 1
ρ∇ ·

(p�u): Change in Potential Energy. �u·f: Work Done. p D
Dt

1
ρ : Dissipation Energy.

D

Dt
(E +

�u · �u
2

) +
1
ρ
∇ · (p�u)− �u · f = Q′ Energy (2.9)

Q′ =
DE

Dt
+ p

D

Dt

1
ρ

First law of thermodynamics (2.10)

Equations of State

E = CtT p = pRT h =
p
ρ

Perfect Gas (2.11)

Deformation and Rate of Strain

Experimental result show that fluid stress depends on the local rate of strain.
The taylor expansion of the velocity:

U ′
i = Ui +

∂Ui

∂xj
δxj +

∂2Ui

∂xk∂xl

δxkδxl

2!
+ · · · (2.12)

Use only the first order term:

�U ′ − �U = ∇�U · δ�x = D̃ · δ�x =
1
2
(Ẽ + Ω̃)δ�x (2.13)

Constitutive Equation

The Newtonian fluid is assumed linear and elastic in terms of the stress – strain
relation. Recall Ẽ = ∇�u+ �u∇,

S̃ = µẼ +
1
2
λtr(Ẽ)Ĩ = µ(∇�u+ �u∇) + λ(∇ · �u)Ĩ (2.14)

The volumetric stress can be written relative to the bulk modulus K.

tr(S̃)
3

= (λ+
2
3
µ)(∇ · �u) = K(∇ · �u). (2.15)

Thus, the stress can be written in terms of the bulk modulus K and the velocities
�u.

S̃ = −2
3
µ(∇ · �u)Ĩ + µ(∇�u+ �u∇) +K(∇ · �u)Ĩ . (2.16)
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Navier Stokke’s Equation

Combining the constitutive equation and the conservation of linear momentum
and assuming µ and K are constant:

D�u
Dt

= −1
ρ
∇p +�f +

1
ρ
∇ ·

(
−2

3
µ(∇ · �u)Ĩ + µ(∇�u+ �u∇) +K(∇ · �u)Ĩ

)
= −1

ρ
∇p +�f +∇ ·

(
−2

3
ν(∇ · �u)Ĩ + ν∇�u+ ν�u∇ +

K

ρ
(∇ · �u)Ĩ

)
= −1

ρ
∇p +�f + ν∇2�u+

(
K

ρ
+
ν

3

)
(∇ (∇ · �u)) (2.17)

If the fluid flow is incompressible then the common form of the Navier Stokke’s
Equation is

D�u
Dt

= −1
ρ
∇p +�f + ν∇2�u. (2.18)

Usually the bulk modulus K is very small compared to the viscous effects and
is usually neglected.

Conservation of Angular Momentum

The incompressible Navier Stokke’s equations can be rewritten if the body forces
can be described by a potential Θ such that

∇× D�u
Dt

= −∇× 1
ρ
∇p +∇×∇Θ +∇× ν∇2�u.

∂�Ω
∂t

= �Ω · ∇�u+ ν∇2�Ω (2.19)

Other theorems related to rotation include the Helmholz Theorem The
circulation around a vortex tube must be the same at all cross sections. The
kinematic result is valid for all viscid and inviscid flows. Vortex tubes and stream
tubes do not coincide in general except for Beltrami Flows. Vortex tubes are
similar to stream lines in that they are parallel to vorticity like stream lines are
parallel to velocity.

The angular momentum along a loop is described by Kelvin’s Circulation
Theorem

DΓ
Dt

= −
∮ ∇P

ρ
+

∮
Θ · �dr +

∮
ν∇2�v · �dr. (2.20)

Boundary Conditions

At the interface between two fluids the shear should be zero in the direction of
the interface where τ̃ = ν∇�u. By a moving wall the speed of the fluid at the
wall should equal that of the wall. At a free surface the change in the velocity
profile is zero in the direction of the interface.
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2.1.4 Types of Flow

Shear Driven Flow: Couette Flow

Solve Navier stokes equation for incompressible unidirectional flow to find that
the velocity distribution is linear, 0 at the fixed wall and U0 at the moving wall.
In such a flow the pressure is hydrostatic.

Pressure Driven Flow: Poiseulle Flow:

Given a constant pressure gradient k, a viscosity ν, and a density ρ, the parabolic
flow profile is proportional by − k

2µ .

Flow in Concentric Circles

Γ(r) =
∮

c

�vθ(r) ·Rdθ = 2πr�vθ(R) and Vθ =
A

r
(2.21)

Γ(r) = 2πR
A

R
= 2πA is constant (2.22)

For any contour not including the center the circulation is zero, no vorticity. For
any simply connected contour including the center the circulation is constant.

Vortex lines move with the fluid. a vortex tube cannot end within the fluid
it must end at a solid boundary or end on itself. On a given vortex the quantity
w
ρl is constant, where w is the vorticity l is hte length of the line, and ρ is density.

Rigid body Rotation

Ω = Ω0 is constant (2.23)

Vθ =
Ω0

2
r (2.24)

Potential Theory

Potential Flow Φ A method for solving flow calculations is in closed form.
Assumptions required include that the applied forces are conservative, no dissi-
pation. That is there are no viscous effects. Consequently the change in force
potential is equal to the work done by conservative forces (the sign change is a
matter of convention):

Φa − Φb =
∫ b

a

�F · d�s (2.25)

Thus, �F as a the gradient of the potential �F = −∇θ. In cartesian coordinates:

u = −∂θ

∂x
and v = −∂θ

∂y
(2.26)

Irrotational flow
2w=̂∇× �v = 0 (2.27)
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In terms of potential flow ∇× (−∇φ) is automatically zero. Thus potential flow
is irrotational. A boundary layer is not irrotational. The flow outside a rankine
vortex is irrotational, inside the vortex is rotational.

Euler’s Equation The navier stokke’s equation for incompressible flow and
only gravity body forces can be rewritten as:

D�v
Dt

= −1
ρ
∇ (P + γh) (2.28)

In terms of potential Φ:

∂(∇Φ)
∂t

+ (∇Φ) · ∇(∇Φ) = −1
ρ
∇ (P + γh) (2.29)

∇
[
∂Φ
∂t

+
1
2
(�v · �v) +

P

ρ
+ gh

]
= 0 (2.30)

For convenience set q = �u · �u. Thus the flow is not a function of spatial coordi-
nates.

q2

2
+
P

ρ
+ gh− ∂Φ

∂t
= F (t) (2.31)

At a given time t the sum is constant everywhere, not just along streamlines as
it is in Bernoulli’s equation.

The Stream Function Ψ The flow rate at between a fixed point A and a
variable point P (x, y) is given by P =̂Ψ(x, y).

Streamline: along stream lines the stream function Ψ is constant, the flow rate
is constant since streamlines are defined to be parallel to the flow velocity
and using continuity.

By calculating the flow between two streamlines which are infinitely far apart
the velocity can be defined in cartesian coordinates as:

v =
∂Ψ
∂x

and u = −∂Ψ
∂y

. (2.32)

And in polar coordinates as:

Vr =
−1
r

∂Ψ
∂θ

and Vθ =
∂Ψ
∂r

. (2.33)

Now notice that the potential and the stream function are related by the Cauchy-
Riemann Equations:

∂θ

∂x
=

∂Ψ
∂y

and
∂θ

∂y
= −∂Ψ

∂x
. (2.34)

Boundary Conditions Here �q is the velocity of the fluid:
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• For fixed boundaries, the velocity component normal to the boundary is
zero at every point on the boundary. �q · �n = 0 if �n is the unit outward
normal from the boundary, similarly dΦ

dn = 0. There is no shear resistance
at the boundary since the viscosity everywhere is by definition zero.

• For boundaries moving at velocity v the normal components of the veloc-
ities of the fluid and the wall must be equal.

�q · �n = �v · �n and (�q − �v) · �n = 0. (2.35)

• At the interface between two fluids velocity differences may exist since
there is no viscosity but the pressure must be continuous across the inter-
face.

Scaling

Creeping Flow: the inertial term is relatively small and can be neglected.

u∗ =
u

U
, ∇∗ =

∇
L
, t∗ =

t

L/U
, and p∗ =

p
U2

Lµ

(2.36)

LU

ν

D�u∗

Dt∗
=

(
−∇∗p∗ +�f∗ +∇∗2�u∗

)
. (2.37)

2.2 Plates and Shells

Assumptions:

1. no deformation in the middle of the plate

2. points of the plate initially lying normal to the middle plane of the plate
remain so

3. the normal stresses in the direction transverse to the plate can be disre-
garded

2.2.1 References

• Theory of Plates and Shells [20]

• Plates and Shells, Prof. Gautam Dasgupta, CU, Spring 1999

2.2.2 Glossary

Curvature: is defined as the inverse of the radius: 1/ρ .

Characteristic Dimension: unique measures of the object. For example thick-
ness, length or curvature.
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Membrane Analysis: Under the application of uniform internal pressure the
stress distribution changes negligibly along the section — thus moments
can be neglected.

2.2.3 The Geometry of Shell Surfaces

(0,0)

α

β

α
α

α
α

α

β

β

β

β

1

1
2

2

3

3

4

4

5

For simplicity choose an α − β coordinate sys-
tem which is orthogonal and traces along the
contour lines of the shell. In general a coordi-
nate grid is not necessarily most convenient in
orthogonal directions – such as in non-uniform
materials. The numbering of contour lines is
completely arbitrary. thus use the most conve-
nient not one based on lengths or equal spaces.
α− β orthogonal coordinate system
αi&βi are constant along the contours

Defining a measure of a shell: radius of curvature and thickness.

Radius of curvature is defined by the changing quantity along a
coordinate line.

(      )

(          )

β

α  , β 

r

α  , β +δβ 

r +  r
β β

∆

i

i  

Thus, any point on the shell is defined by the vector �r from the origin to its
position. Directional derivatives give the slope of the shell at a any point in any
given direction.

�r,a =
∂�r

∂α
=

∣∣∣∣ ∂�r∂α
∣∣∣∣�ta and �r,b =

∂�r

∂β
=

∣∣∣∣ ∂�r∂β
∣∣∣∣�tβ (2.38)

�ta and �tb are unit vectors in the given tangential directions the normal direction
is then �tn = �ta × �tb. They, like the radius of curvature are defined by the
value which is changing along the contour. The metric is the length element
A = |r,α |and B = |r,β |. Using this any length on the plate is defined as
ds2 = A2dα2 +B2dβ2.

ρ
α

Ψd α

α

α + δα

α

α+δα

t ( )n

tn(        )

αt ( )α

α+δαtα(        )

The radius of curvature can be defined in terms of these
metrics and directional derivatives at any given point.
If dψa small enough, the small angle approximation is
valid.

dSα = Rαdψα = Adα (2.39)

lim
dα→0

�tn(α+ dα)− �tn(α)
dα

=
∣∣∣∣∂tn∂α

∣∣∣∣�tα = �tn,α (2.40)

dψα�tα = �tn(α+ dα)− �tn(α) (2.41)

lim
∆a→0

1
A

�tn(α+ dα)− �tn(α)
dα

=
1
Rα

dψα�tα
dψα

=
1
A

∂�tn
∂α

=
1
Rα

�tα (2.42)
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1
A
�tn,α ·�tα =

1
Rα

�tα · �tα =
1
Rα

analogously
1
Rβ

�tβ · �tβ =
1
Rβ

(2.43)

Principal Directions α∗−β∗ are the directions of maximum and minimum
curvature. They are orthogonal.

1
Rn

=
1
2

(
1
R1

+
1
R2

)
+

1
2

(
1
R2

− 1
R1

)
cos 2α (2.44)

1
Rnt

=
1
2

(
1
R1

+
1
R2

)
sin 2α (2.45)

Gaussian curvature:

1
Rα

· 1
Rβ

= −

(
B,α
A

)
,α +

(
A,β
B

)
,β

AB
(2.46)

Tools to Solve: Derivatives of Local Coordinate Vectors.



�tα,α
�tα,β
�tβ ,α
�tβ ,β
�tn,α
�tn,β


=



0 −A,β
B − A

Ra

0 B,α
A 0

A,β
B 0 0

−B,α
A 0 − β

Rβ

A
Rα

0 0
0 B

Rβ
0



�tα
�tβ
�tn

 (2.47)

Solve Procedure

�tα,α = C11�tα + C12�tβ + C13�tn and �tα,α ·�tα = C11 = 0 (2.48)

and �tα,α ·�tβ = C12 and �tα,α ·�tn = C13 (2.49)

Other values are from curvature.

2.2.4 Equilibrium

Separate a finite shell section. Apply thin shell theory assumptions: (1)
Plane sections remain planar relative to the deformed midline of the shell (2)
the shell is thin relative to the defining measurements of curvature and thickness.
Consider the equilibrium over the section, notice that the axial stresses are
linearly distributed and the shear is parabolic. Therefore shear deformation
is 0 and there is no warping.
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Membrane Forces

N

Q

dα

β

tα

tβ

tη

α

Nα

Nα

βNα

Qα

Nα,α α+

dNαβ,α α+

dQα,α α+
Qβ

αNβ

Nβ

Qβ dQβ,β β+

N dβ Nβ,β β+

αNβ dNβα,β β+

Bending Forces

M dα
tα

tβ

tη

Mα

βMα

Mα,α α+

βMα dMαβ,α α+

αMβ

Mβ

M dβ Mβ,β β+

αMβ dMβα,β β+

Equilibrium of Forces((
�tαNα + �tβNαβ + �tnQα

)
Bdβ

)
,α dα +((

�tβNβ + �tβNβα + �tnQβ

)
Adα

)
,β dβ +(

qα�tα + qβ�tβ + qn�tn
)
ABdαdβ = 0 (2.50)

Equilibrium of Moments

((Mα�tβ +Mαβ�tα)Bdβ),α dα +
((Mβ�tα +Mβα�tβ)Adα),β dβ +
QαBdβAdα+QβAdαBdβ = Mapplied (2.51)

For axially symmetric shells without shearing forces or Surfaces of Revolu-
tion. Membrane analysis can be applied. Sum forces verticallyR =

∫ ψ

0
qa2πr0dψ =

2πa2q(1−cosψ), where R(ψ) is the vertical body force. R(ψ)+2πr0(Nψ) sinψ =
0. Sum forces inward in a loop. Nψr0dθdψ+Nθr1 sinψdθdψ+q cosψr0r1dψdθ =
0.

Section forces from stresses. For a uniform stress σ0 along a section
small enough dψ such that R can be assumed to be constant. Stress in sec-
tion σ0

((
R + h

2

)2 −
(
R− h

2

)2
)

πdψ
2π here h is the thickness of the plate. Stress

over midline N = σ0
Rdψ

(
R2 +Rh+ h2

4 −R2 +Rh− h2

4

)
πdψ
2π = σ0h Notice that

shear stresses are only parabolic in the mean– warping in fact does occur. For
a thin shell assume:

σmax

(
±h

2

)
=

Nij

h
± 6Mi

h2
but σ(0) =

3
2
Q0

h
(2.52)

For axially symmetric shells without shearing forces or Surfaces of Revolu-
tion. Membrane analysis can be applied. Sum forces verticallyR =

∫ ψ

0
qa2πr0dψ =

2πa2q(1−cosψ), where R(ψ) is the vertical body force. R(ψ)+2πr0(Nψ) sinψ =
0. Sum forces inward in a loop. Nψr0dθdψ+Nθr1 sinψdθdψ+q cosψr0r1dψdθ =
0.
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2.2.5 Strain and Constitutive Relationship

The strain displacement is defined in terms of the change of a length on the
surface

εw =
(r1 − w)dψ − r1dψ

rdψ
=

w

r
and εv =

∂θ
∂ψ dψ

rdψ
=

1
r

dv
dψ

− w

r1
(2.53)

For linear elastic small displacement the constitutive relationship is given as:

εθ =
1
E

(σθ − νσψ) and εψ =
1
E

(σψ − νσθ) (2.54)

From membrane analysis σθ = Nθh and σψ = Nψh. Putting these together:

εθ =
1
Eh

(Nθ − νNψ) and εψ =
1
Eh

(Nθ − νNθ) (2.55)

2.2.6 Application

The procedure for solving a shell or plate problem is

• Select a coordinate system α− β

• Test assumptions of thin shell and
small deformation

• characteristic lengths and direc-
tions

• normal to surface

• curvature (exhibits tensor proper-
ties

• equilibrium

• relate section forces to point
stresses

• impose constitutive relationship

• find forces and moments in terms
of strains and displacements

• impose boundary conditions

• solve

Toroidal Shell

• Determine the coordinate system

�r = f1�u+ f2�v + f3 �w
f1 = (r1 + r2 cos θ2) cos θ1
f2 = (r1 + r2 cos θ2) sin θ1
f3 = r2 sin θ2 (2.56)

• Determine characteristic lengths A and B

∂�r

∂θ1
= (−(�r1 +�r2 cos θ2) sin θ1)�u+ ((�r1 +�r2 cos θ2) cos θ1)�v+ (0)�w (2.57)

A2 = (r1 + r2 cos θ2)2; A = r1 + r2 cos θ2 (2.58)
∂�r

∂θ2
= cos θ1(−r2 sin θ2)�u+ sin θ1(−r sin θ2)�r + r2 cos θ2 �w (2.59)

B2 = r22; B = r2 (2.60)
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• determine directions �tα,�tβ ,�tn

�tα =
1
A

∂�r

∂θ1
= − sin θ1�u+ cos θ�v

�tβ =
1
B

∂�r

∂θ2
= − cos θ1 sin θ2�u− sin θ1 sin θ2�v + cos θ2 �w

�tn = �tα × �tβ = cos2 θ1�u+ sin θ1 cos θ2�v + sin θ2 �w (2.61)

• find the curvatures

1
Rα

=
1
A
�tn, α · �tα =

1
A

(2 cos θ1 sin2 θ1 + cos2 θ1 cos θ2) (2.62)

analogously

1
Rβ

=
1
B
�tn, β · �tβ =

1
B

(sin2 θ1 sin θ2 cos θ2 + cos2 θ2) (2.63)

Maximize and minimize to find the principal directions.

Spherical Shell

Pick a spherical coordinate system:

f1 = r sin ρ cos θ f2 = r sin ρ sin θ f3 = r cos ρ (2.64)

Thus �r = f1�u + f2�v + f3 �w. and the characteristic lengths are A = r sin ρ and
B = r. The directions are �tα = 1

A
d1r
dθ = − sin θ�u + cos θ�v and �tβ = 1

B
d1r
dθ =

cos ρ cos θ�u + cos ρ sin θ�v − sin ρ�w. The normal direction to the shell is �tn =
− cos θ sin ρ�u− sin θ sin ρ�v − cos ρ�w. Solve for the derivatives.

�tα,α
�tα,β
�tβ ,α
�tβ ,β
�tn,α
�tn,β


=


0 −cosρ − sin ρ
0 0 0

cos ρ 0 0
0 0 −1

sin ρ 0 0
0 1 0



�tα
�tβ
�tn

 (2.65)

Use membrane analysis to find equilibrium equations:

d
dρ

(Nφr sin ρ)− r cosNθ = −r2 sin2 ρq and
Nθ

r
+
Nφ

r
= −q cos ρ (2.66)

Cylindrical bending — pure bending

The curvature of a plate in pure bending without any assumptions beyond the
continuum assumptions is derived as follows:
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M Mρ
dϕ

ds

dw

dx

ρ dψ = ds (2.67)

1
ρ

=
dψ
ds

=
dx
ds

dψ
ds

(2.68)

ψ = tan−1 dw
dx

(2.69)

ds2 = dx2 + dw2 (2.70)

ds
dx

=

√
1 +

(
dw
dx

)2

(2.71)

The curvature of a plate in pure bending is thus:

χ =
1
ρ

=
d
dx (tan−1 dw

dx )√
1 + (dw

ds )2
=

−∂2w
∂x2

(1 + (dw
ds )2)

3
2

(2.72)

For cylindrical shells summing of forces including bending moments results in

D
d4w

dx4
+
Eh

a2
w = Z (2.73)

Where D = Eh3

12(1−v3) is the bending stiffness.

One dimensional plate behavior— simple beam assumptions

1. neglect shear effect

2. neglect warping: plane sections remain planar

Thus the deformation must be small and dw
ds ≈ 0

dx

dϕ

compression

neutral

elongation

χx = −∂2w

∂w2
& χx =

dψ
dx

(2.74)

ds = ρdψ (2.75)

(ρ+z)dψ = ds+(u+
∂u

∂x
dx−u) (2.76)

zdψ =
∂u

∂x
dx = εxdx (2.77)

Thus, the strain depends on the curvature and the distance from the neutral
axis zχx = εx. Thus, the sign of the curvature is consistent with the compression
(−) and elongation (+) convention.

In cylindrical bending χy = 0, so εy = 0. And the problem is a plane stress
problem σz = 0. The stress for a homogenous isotropic plate under pure bend-
ing is:
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εx =
σx

E
− ν

σy

E
= χxz (2.78)

εy =
σy

E
− ν

σx

E
= 0 (2.79)

σy = νσx (2.80)

εx = (1− ν2)
σx

E
(2.81)

σx =
Eεx

(1− ν2)
(2.82)

The plate moment then is

Mx =
∫ h/2

−h/2

σxzdz =
E

(1− ν2)
(χx)

∫ h/2

−h/2

z2dz =
EI

12(1− ν2)
χx (2.83)

2.3 Reliability

2.3.1 References

• Reliability Based Design in Civil Engineering [11]

• Statistical Analysis for Scientists and Engineers [1]

• Structural Reliability Methods [6]

• Reliability, Prof. Gautam Dasgupta, CU E4225, Fall 1999

2.3.2 Glossary

Probabilistic: Axiomatic Theory

Statistical: Numerical calculations and Estimations

Stochastic: Educated Guessing

Frequency Distributions: Value vs. the frequency of value occurrences.

Mean: First statistical moment. Point at which the peak of the normal distri-
bution occurs. x̄ =

∫ ∞
−∞ xfx(x)dx.

Expected Value: E(x̃) = x̄ =
∫ ∞
−∞ xfx(x)dx

Statistical Moments: In general form

(Sµ)m =
∫ ∞

−∞
(x− x̄)mfx(x)dx = E[(x̃− E(x̃))m] (2.84)

Standard of Deviation: Second statistical moment. Width of the normal
distribution.

Skewness: Third statistical moment. Symmetry of the normal distribution.

Kurtosis: Fourth statistical moment. Behavior of the normal distribution at
its ends.
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Beta Distribution: β is the beta–function β(m,n) =
∫ 1

0
xm−1(1 − x)n−1dx.

If m = n the function is symmetric. fx = xm−1(1−x)n−1

β(m,n) .

Normal Distribution:
fx =

1√
2π

e−
(x−x̄)2

2σ2 (2.85)

Standardized random variable: z̃ = x̃−µx
σx

. The mean of z̃ is zero and the
standard of deviation is one.

Limit State: If the value is less than the limit state the system fails otherwise
it holds. < 0: failure, > 0: safe, = 0: limit state.

2.3.3 Application

The general form of a problem in mechanics is a linear operator L acting upon
a response u related to an applied force f .

Lu = f (2.86)

Any part of the equation may be stochastic.

2.3.4 Theory

Transformation of Distributions

Given y = g(x) the relationship between fx(x) and fy(y) can be derived by the
relationships between areas. The probability that the actual value lies between
x and x+ dx is fx(x)dx. By equating areas find that: fy(y) = fx(x)

dy/dx . Thus, fy

can be written in terms of x. Notice that areas are being compared so choose
only positive values of the x = g−1(y) if there is a choice. For functions whose
inverses are single valued:

fy(y) =
fx(x)∣∣∣dy

dx

∣∣∣ (2.87)

The linear combination of two uncoupled gaussian distributions is a gaussian
distribution.

Statistical Dependence

Use covariance to determine wether or not statistical variables are related.

σ2
xy =

1
N

N∑
i=1

(xi − x̄)(yi − ȳ) = cxy = cyx (2.88)

Correlated standard gaussian values (x̄ = 0 and σ = 1) can be combined
linearly to find uncorrelated values.
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z̃1 = α1x̃1 + α2x̃2 (2.89) z̃2 = β1x̃1 + β2x̃2 (2.90)

For z̃1 and z̃2 to be uncorrelated the following should be true. Notice that
the following calculations assume that x1x2, x2

1, and x2
2 are uncorrelated.

E(z̃2
1) = E[(α1x̃1 + α2x̃2)2] = α2

1 + α2
2 + 2α1α2 c = 1 (2.91)

E(z̃2
2) = E[(β1x̃1 + β2x̃2)2] = β2

1 + β2
2 + 2β1β2 c = 1 (2.92)

E(z̃1 ∗ z̃2) = E[α1β1x
2
1 + (α2β1 + β2α1)x1x2 + α2β2x

2
2]

= α1β1 + α2β2 + (α2β1 + β2α1)c = 0 (2.93)

Reliability Index β

Given a limit state function: g(ã, b̃, c̃, . . .) = f1(ã, b̃, c̃, . . .), find the expected
value µg = f2(µa, µb, µc, . . .). For first order approximations f2 = f1.

For uncorrelated gaussian random variables:

σ2
g =

∑
i

(
∂g

∂η̃i

)2

σ2
ηi =

(
∂g

∂ã

)2

σ2
a +

(
∂g

∂b̃

)2

σ2
b +

(
∂g

∂c̃

)2

σ2
c + . . . (2.94)

The variance of g the limit function is β = µg
σg

.

Let the standardized Gaussian variable be defined as z̃ = D̃−µD
σD

, where
D = Resistance−Load. If D̃ < 0 then σD z̃+µD < 0 and z̃ < −µD

σD
= −β. Thus,

the probability of failure Pf = φ(−β) where φ is the cumulative distribution for
the standardized Gaussian variable z̃.

FOSM: First Order Second Moment

FOSM uses a first order taylor expansion and up to the second statistical mo-
ment.

Given [K̃]{ũ} = {f} define a reference stiffness [K0] = E(K̃). Thus the
stiffens deviator [∆̃K] = [K̃] − [K0]. The equilibrium equation is defined as
{f} = [K0]{U0}. Thus displacement can also be defined in terms of deviation
{∆̃u} = {ũ} − {U0}. This equality follows:

{f} = [K̃]{ũ} =
(
[K0] + [∆̃K]

) (
{U0}+ {∆̃u}

)
(2.95)

[K0]{∆̃u} + [∆̃K]{U0} = 0 so {∆̃u} = −[K0]−1[∆̃K]{U0} (2.96)

This first order expansion is now evaluated. The mean is:

E({ũ}) = E({U0}+ {∆̃u}) = {U0} (2.97)

The covariance is:

E[{ũ}{ũ}T ] = [K0]−1E
[
[∆̃K]

(
{U0}{U0}T

)
[∆̃K]

]
[K0]−1 (2.98)

Thus the covariance of the displacement {ũ} depends on the covariance of the
matrix [∆̃K].
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Bayesian Concepts: Decision Making

Created by Thomas Bayes 1.
For two variables:

(A ∩B) = (AB) = (A|B)(B) = (B|A)(A) (2.99)

(A|B) =
(AB)
(B)

(B|A) =
(AB)
(A)

(2.100)

For more variables: by applying eq. 2.99 on regrouped variables:

(A ∩B ∩ C) = ((A ∩B) ∩ C) = (C ∩ (A ∩B))
= (C|(A ∩B)) (A ∩B) = (C|(A ∩B)) (B|A)(A) (2.101)

Notice that the expression is a function of (A). Similarly we can get:

(A ∩B ∩ C ∩D) =
(
D

∣∣∣(A ∩B ∩ C)
)(

C
∣∣∣(A ∩B)

)
(B|A)(A) (2.102)

Thus one can reason from effects to cause. In engineering design-analysis
this idea is used in stochastic system identification problems.

Let Bi be a sub event in the set of mutually exclusive Bi, (i = 1, 2, ...n).
Given (Bi) and (A|Bi) are given when we want to calculate for one particular
r the value of (Br|A).

(Br|A) =
(A|Br)(Br)

(A)
(A) =

n∑
i=1

(A|Bi)(Bi) (2.103)

Hence,

(Br|A) =
(A|Br)(Br)∑n
i=1(A|Bi)(Bi)

(2.104)

2.3.5 Application to Systems

If one of the s members of a statically determinate system fails then the entire
system fails. If for example each element has the same probability of failure pf

then the structure is only save when all its components are safe. That is

Pf = 1− (1− pf )s. (2.105)

In a statically indeterminate system r number of members are redundant.
The structure is safe when any r elements fail, or even r−i elements if 0 ≤ i ≤ r.
Thus the probability of failure is:

Pf = 1−
i=r∑
i=0

s+rCr−1(1− pf )s+ipr−i
f (2.106)

1Thomas Bayes, an English clergyman developed the idea in the later half of the eighteenth
century.
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For simplicity let k = r − i the number of failed pieces, and let N = s + r be
the number of members plus the number of redundancies.

Pf = 1−
k=r∑
k=0

NCk(1− pf )N−kpk
f (2.107)

Now k is just a dummy variable and the sum can be shifted j = N − k:

Pf = 1−
j=N∑
j=s

NCj(1− pf )jpN−j
f (2.108)



Chapter 3

Dynamics and Vibrations

3.1 Linear Vibration

3.1.1 References

• Engineering Vibration [13]

• Vibrations, Prof. Rimas Vacaitis, CU E4215, Fall 1998

3.1.2 Glossary

Steady State: periodic motion whose frequency is independent of time.

Transient: motion is not oscillatory.

Natural Frequency: frequencies at which the system would oscillate if it were

vibrating freely. For a single degree of freedom system w =
√

k
m .

Harmonic: sinusoidal periodic motion

Amplitude: the vertical range of the sine wave is ± the amplitude.

Period: the time it takes for the a periodic function to complete its unique
component or cycle.

Frequency: radians per second, or the inverse of the period.

Radial frequency: cycles per second, or 2π times the frequency.

Average values: x̄ = limt→∞
∫ T

0
x(t)dt

Mean squared values: x̄2 = limt→∞
∫ T

0
x2(t)dt

Root Mean Squared: rms =
√
x̄2

Power: rate of doing work P = F dx
dt .

55
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Damping: energy dissipation by damping The energy dissipated by damping
can be given as Wd =

∮
Fddx. For a single degree of freedom system

Wd = 2ζπkx2. Damping is defined as c = 2ζ
√
km. For a single degree of

freedom system wd = wn

√
1− ζ2

Equivalent viscous Damping: for harmonic motion only. The energy
dissipated by viscous damping is equal to the energy dissipated by
non-viscous damping. This must be evaluated for each particular
damping force.

πceqwx
2 = Wd (3.1)

Structural Damping: or solid damping. A constant α is found experi-
mentally.

πceqw = α αx2 = Wd (3.2)

Coulomb Damping: from sliding friction. This linear damping is inde-
pendent of frequency.

Fd = Fd(ẋ) =

 µN ẋ > 0
0 ẋ = 0

−µN ẋ < 0
(3.3)

Viscous Damping: equivalent to structural damping. Estimate by power
or logarithmic method.

Decibel: db = 10 log10

(
x1
x0

)2

where x0 is the reference amplitude and x1 is the
measured amplitude.

Dunkerley’s formula: given a as a flexibility coefficient [K]−1 = [a]. The
sum of the trace of the matrix gives a lower bound for the eigenvalue:

det
(

[a][M ]− [I]
w2

)
= 0,

n∑
i=1

aiimii =
∑
i=1

1
w2

i

,
1
w2

1

≤
n∑

i=1

aiimii (3.4)

Rayleigh Method: Energy Method: upper bound

w2 ≤ {uT }[K]{u}
{uT }[M ]{u} = R(u). (3.5)

Guessing a modal displacement {u} that makes sense often is a good
approximation for the natural frequency w.

Frequency Response Functions: When forcing frequency and natural re-
sponse frequencies coincide the frequency response increases. In an un-
damped system it increases to infinity.

x(t) = A|G(iw)|eiwt and |G(iw)| =

(
1−

(
w

wn

)2
)2

+
(

2ζ
w

wn

)2
− 1

2

(3.6)
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The phase angle associated with the frequency is:

φ = tan−1

(
2ζ w

wn

1− w
wn

2

)
(3.7)

3.1.3 Equations of Motion

The equations of motion can be found using conservation of linear momentum
or conservation of energy. To apply conservation of momentum a free body
diagram is drawn for each mass and the forces about each mass is summed.
The energy equation is applied using Lagränges equation where the potential
energy V = 1

2kq
2 and the kinetic energy T = 1

2mq̇2. thus for conservative
systems

d
dt

(
∂T

∂q̇k

)
+

∂V

∂qk
= Qk (3.8)

A lagrangian L = T − V can be used to reformulate the equation.

d
dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= Qk (3.9)

Here q are independent generalized coordinates and Qk are path independent
conservative forces. Nonconservative forces such as damping can be included
using F = cij q̇iq̇j , and add a force Qvisc = ∂F

∂q̇k
.

For a continuous distributed parameter system, look at the equilibrium of
an infinitesimal piece and sum forces including inertia terms.

3.1.4 General Forced Response

3.1.5 Discrete System

Direct method {x(iw)} = [Z(iw)]−1{Q0} where Z is the impedance matrix,
and [Z(iw)] = −w2[M ] + iw[C] + [K]. Solving

{q(t)} =
adj[Ziw]{Q0}eiwt

det[Ziw]
(3.10)

Modal method For a proportionally damped multi degree of freedom sys-
tem this method uncouples the system.

• Find eigenvalues det([A]− λ[I]) = 0 where [A] = [M ]−
1
2 [K][M ]

1
2 .

• Find eigenvectors ([A]− λ[I]){vi} = {0}

• Normalize ||vi|| =
√
{vi}T {vi} and {v̄i} = 1

||vi||{vi}.

• Normalized modes {ui} = [M ]−
1
2 {vi}.



58 CHAPTER 3. DYNAMICS AND VIBRATIONS

• Duhamel’s equation

ηi(t) =
1
wdi

∫ t

0

Ni(t− τ)e−ζiwit sin(wdiτ)dτ. (3.11)

Also, wdi = wi

√
1− ζ2

i and Ni(t) = {ui}T {Q(t)}. Here {Q(t)} is the
vector of forcing functions for each degree of freedom.

• Find solution q(t) =
∑n

i=1 ηi(t){ui}

Harmonic Excitation systems with structural damping exhibit harmonic
responses to harmonic input. [C] = 1

πw[α] also [α] = φγ[K] and since the system
is harmonic {q̇} = iw{q}. The governing equation for such a system is

[M ]{q̈(t)}+ (1 + iγ)[K]{q} = eiwt{Q0} (3.12)

Solve using generalized form:

η̈r(t) + (1 + iγ)w2
rnr(t) = eiwtNr where Nr = {ur}T {Q0} (3.13)

ηr(t) =
eiwtNr

(1 + iγ)w2
r − w2

and {q(t)} =
n∑

i=1

eiwt{ur}T {Q0}
(1 + iγ)w2

r − w2
{ur} (3.14)

Shock Spectrum a sudden application of force results in a transient re-
sponse known as shock.

x(t) =
∫ t

0

F (t)g(t− τ)dτ where g(t− τ) =
1

mwd
e−ζwn(t−τ) sinwd(t− τ)

(3.15)
The maximum can be found using the derivative.

Continuous system

Normal Mode Approach to Finite and Continuous Structures Assume
small damping and orthogonal modes. the general equation of motion is

L[w] + c(ẇ) +ms(w) = P (�ρ, t) (3.16)

here L is the structural operator. Typical values included −T ∂2

∂x2 for a taut
string, EI ∂4

∂x4 for a beam and D( ∂4

∂x4 + 2 ∂4

∂x2∂y2 ) + ∂4w
∂y4 .

The influence response function h(�r, �ρ, t) must satisfy the governing equation.

L[h] + c(ḣ) +ms(h) = δ(�r − �ρ)δt (3.17)

Assume a modal solution

h(�r, �ρ, t) =
∞∑

m=1

am(�ρ, t)Ym(�r) (3.18)
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note, each summation is also over the domain. substituting into the equation
find:

∞∑
m=1

amL[Ym] + c

∞∑
m=1

ȧmYm +ms

∞∑
m=1

ämYm = δ(�r − �ρ)δt (3.19)

First find the value of the normal modes by solving the free vibration solution,
notice that the equation can be uncoupled if the nodes are normal so the free
modal response of the uncoupled system is of interest.

m2b̈mYm + bmL[Ym] = 0 (3.20)

For undamped free vibration b̈m = −w2
mbm. The characteristic condition then

is
msw

2
mYm = L[Ym] (3.21)

Use orthogonality to find the generalized quantities.∫
R

· · ·
∫

R

msYm(�r)Yn(�r)dr =
{
Mn m = n
0 m �= n∫

R

· · ·
∫

R

cYm(�r)Yn(�r)dr =
{
cn m = n
0 m �= n

(3.22)

Substitute this into the governing equation.

Mmäm(t, �ρ) + cmȧm(t, �ρ) +Mmw
2
mam(t, �ρ) = Ym(ρ)δ(t) (3.23)

Assume that am = 0 ∀t < 0. The solution for am then by separation of variables
is

am(t, �ρ) =
{
Ym(�ρ) exp(−ρmwmt) sin(wΦ

mt) �ρ ∈ R & t ≥ 0
0 �ρ /∈ R or t < 0 (3.24)

where ρm = cm
2Mmwm

and wΦ
m = wm

√
1 − ρ2

m. Also am = Ym(�ρ)hm(t) ∀�ρ, t ∈ D.
Where D is the domain where �ρ ∈ R and t ≥ 0. Now the impulse response
function reach mode can be written as:

h(�r, �ρ, t) =
∑

Ym(�r)Ym(�ρ)hm(t) ∀�ρ, t ∈ D (3.25)

The frequency influence function is found by taking the fourier transform

H(�r, �ρ, w) =
∫ ∞

−∞
h(�r, �ρ, t)eiwtdt =

∑
m=1

Ym(�r)Ym(�ρ)Hm(w) (3.26)

Where
Hm(w) =

1
Mm(w2

m − w2 + 2iζmwwm)
(3.27)

Modal Solution: L is the stiffness operator it is linear homogenous and
self-adjoint (u,Lv) = (Lu, v) =

∫
D

Lu · vdD. Solve partial differential equation.
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3.1.6 Vibration Suppression

Frequency comparison

For force isolation problems force and displacement transmissibility must be
considered. For a single degree of freed om system the transmissivity ratio for
base excitation is:

X

Y
=

[
1 + (2ζr)2

(1− r2)2 + (2ζr)2

] 1
2

(3.28)

for device excitation:

Ft

KY
= r2

[
1 + (2ζr)2

(1 + r2)2 + (2ζr)2

] 1
2

= r2
X

Y
(3.29)

Here r = wdr
wn

and ζ is the damping ratio.
Displacement: For r <

√
2 the transmissibility ratio is greater than 1. for

r >
√

2 the ratio is less than one and the motions are reduced. Force: For
a single degree of freedom system the displacements are in the form x(t) =
A0 cos(wdr t − ψ) and the associated force is FT (t) = kx(t) + cẋ(t). Here also
r >

√
2 the force is decreased.

Vibration Absorbers

Create a two degree of freedom system for steady state vibration. The force
transmissivity ratio is a function of the ratio between frequencies of the structure
r and the added mass β. A one degree of freedom system becomes a two degree
of freedom system with two separate natural frequencies before and after the
original natural frequency.

xk

F0
=

(2ζr)2 + (r2 − β2)2

(2ζr)2(r2 − 1 + µr2) + (µr2β2 + (r2 − (r2 − β2)))2
(3.30)

Other vibration remedies

include viscoelastic damping treatments and active control solutions using smart
materials.

3.2 Nonlinear Vibration

3.2.1 References

• Nonlinear Dynamics

• Dynamics of Systems

• Nonlinear Dynamics

• Nonlinear Dynamical Systems, Prof. Frank Cariello, CU E4101, Spring
2000
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3.2.2 Glossary

Linear Equation: An equation which when added and multiplied by scalars
remains first order.

Nonlinear Equation: An equation containing higher order quantities.

Phase Space: In general, phase space represents the relationship between n
dependent variables of the same independent variables.

1. Phase curves do not intersect for autonomous systems — where
unique solutions exist.

2. The integral of motion is a geometric construct

3. Long time behavior can be determined, often without integration.

A system of N dimensions makes N dimensional phase space for an au-
tonomous system. A non-autonomous system is of N + 1 dimensions.

Phase Flow: Traces the motion along a phase curve as the independent vari-
able increases.

Phase Portrait: Collection of phase curves which depend on their initial co-
ordinates.

Conservation Laws: For time invariance energy is conserved. For a closed
system (static). The vector sum of forces is zero, as is the change in
momentum. Momentum itself is conserved.

Every invariance of the lagrangian under some transformation leads to a
conserved quantity.

Canonical Transformation: Integration is easier if �p, �q → �P , �Q through a
canonical transformation such that �P is chosen to be a constant of motion.

Ṗ = −∂H ′

∂qi
= 0 (3.31)

Q̇ =
∂H ′

∂pi
= fi(P1, . . . , Pn) (3.32)

If the Jacobian is constant (one for simplicity) the transformation is canon-
ical.

J = det
[
P, p P, q
Q, p Q, q

]
(3.33)

Canonical transformations can be generated from the non-uniqueness prop-
erty of the Lagrangian.

Ergotic Hypothesis:
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Functional Dependence: Functions are independent if and only if F (u1, u2) =
0 here F is an involution.

det
[
∂(u1, u2)
∂(x, y)

]
= 0 (3.34)

KAM theorem: For a small perturbation most tori are preserved if a (1) su-
per -convergent method is used and (2) the frequencies are sufficiently
irrational. ∣∣∣∣w1

w2
− r

s

∣∣∣∣ > K(ε)
S2.5

∀ r, s (3.35)

Continued Fraction Representation: Approximations to r and s can be
found with a continued fraction approximation.

σ = a0 +
1

a1 + 1
a2+

1
a3

· · · (3.36)

Where an is an integer.

Measures of Chaos: One definition of Chaos is a mapping whose behavior is
dissipative and whose Liapanov exponent is greater than zero.

Liapanov Exponents: > 0 chaotic < 0 regular.

σ = lim
n→∞

1
N

N−1∑
i=0

ln
∣∣∣∣ dfdx

∣∣∣∣
x=xi

(3.37)

also the Liapanov exponents are related to the eigenvalues of the
linearized map, thus the are ordered like the eigenvalues are.

σ1 = ln|λ1| (3.38)

Dissipative System: A system �̇x = �F (�x) is dissipative if ∇ · �F < 0. It
is conservative if ∇ · �F = 0. In a dissipative system the sum of the
Liapanov exponents is less than one.

Fractals: Fractal dimension is defined by N the number of replicas and r the
size of the replica relative to the original.

D =
lnN

ln(1/r)
(3.39)

Strange Attractors: Attractors of higher order mappings seem to increase
the frequencies in the behavior until they appear chaotic. Actually the
frequencies only increase to about order four before chaotic behavior con-
trols. The appearance of these attractors makes the patterns in phase
space self replicating.

In general strange attractors occur in a dissipative system of non-integer
dimension near to diverging orbits.
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3.2.3 Theory

Classical Mechanics

Lagrange

Generalized coordinates: �x = �x(q)
From Newton’s conservative system, mẍ = −∂V (x)

∂x where V is the potential
energy.

∂V (q)
∂q

=
∂V (x)
∂x

∂x

∂q
= −mẍ

∂x

∂q
= −m

[
d

dt

[
ẋ
∂x

∂q
− ẋ

d

dt

(
∂x

∂q

)]]
(3.40)

Also :
∂x

∂q
q̇ = ẋ (3.41)

∂f(q, q̇)
∂q

=
∂f

∂q

∣∣∣∣
q̇

&
∂f

∂q̇
=

∂f

∂q̇

∣∣∣∣
q

&
∂ẋ

∂q
=

∂2x

∂q2
q̇ =

d

dt

(
∂x

∂q

)
(3.42)

∂V (x)
q

= −m
[
d

dt

∂

∂q̇

(
ẋ2

2

)
− ∂

∂q

(
ẋ2

2

)]
(3.43)

Recall that Kinetic Energy can be written T = 1
2mẋ2.

∂V

∂q
=

−d
dt

∂

∂q̇
T +

∂

∂q
T (3.44)

Define L = T − V as Lagrange’s equation of motion, if V = V (q), then ∂V
∂q̇ = 0.

Thus:
d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (3.45)

Every conservative system can be described with n 2nd order equations. All
information about the system is contained in the Lagrangian L(�q, �̇q). A benefit
to this representation is that energy is not a vector quantity and is consequently
invariant to point deformations. The Lagrangian for a system is not unique.
L′ = L+ ∂F

∂t (�q, t) also satisfies the equation.

Generalized Quantities

E: Constant of motion
E =

∑
qi

∂L
∂q̇i

− L
∂E
∂t = −∂L

∂t = 0 if Lagrange’s equation has no explicit time dependence.

d

dt
L(�q, �̇q, t) =

N∑
i=1

∂L

∂qi
q̇i +

N∑
i=1

∂L

∂q̇i
q̈i +

∂L

∂t
(3.46)

∂L

∂q
=

d

dt

∂L

∂q̇
(3.47)
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−dL

dt
=

d

dt

(
N∑

i=1

(
q̇i
∂L

∂q̇i
− L

))
(3.48)

Fi = ∂L
∂qi

Generalized Force
Pi = ∂L

∂q̇i
Generalized Momentum

Hamiltonian Mechanics

H(�p, �q, t) =
N∑

i=1

piq̇i−L(�q, �̇q, t), dH =
N∑

i=1

(
∂H

∂pi
dpi +

∂H

∂qi
qi

)
− ∂H

∂t
dt (3.49)

Using definitions of generalized coordinates, properties of the lagrangian and
the definition of the hamiltonian:

∂H

∂pi
= q̇i, −∂H

∂qi
= ṗi,

∂H

∂t
= −∂L

∂t
. (3.50)

�p, �q are canonical vectors that form a 2n dimensional phase space in which phase
trajectories do not intersect and phase volume is preserved.

Geometry of an integrable System

A completely integrable system H(�p, �q) can be separated into n independent,
analytic, single valued first integrals where �F (�p, �q) ∈ constants. These resulting
functions are necessarily independent.

A 2N dimensional system can be confined to a N dimensional manifold
(Hamiltonian), the geometry is an N dimensional torus. The energy surface is
2N − 1 dimensional. The ergodic hypothesis is false in general.

Torus

From the Poincaré - Hopf theorem. Each first integral Fm is constrained to a
vector field: �Vm = (�∇pFm − �∇gFm) with 2n components. �Vm ⊥M where M is
the integral manifold. �Vm ⊥ ⊥M .

�Vm · (�∇pFm, �∇gFm) = {Fm, Fm} = 0 (3.51)

Any compact manifold that is parallelisable with N smooth fields is a N -torus.

Action Angle Coordinates: A torus can be defined by the following action
angle coordinates:

Ii Constants of motion

θi Periodic, repeats in 2π

H(�p, �q) → H(I) by a canonical transformation. Thus, on the torus I =
1
2π

∮
pdq, θ increases by 2π in one period. İ = ∂H(I)

∂θ and θ̇ = ∂H(I)
∂I = w(I)

a function of constants.
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Motion on a Torus: Ti is the period in the θi direction. If the orbits close
niTi = njTj where i = 1, 2, 3, . . . N and j = 1, 2, 3, . . . N . As usual Ti =
2π
wi

. Thus, if wi
wj

= n
m is a rational number the torus closes, if it is irrational

it remains open. The overall period of motion is T = niTi no sum over i
where n is an integer.

3.2.4 Methods for Solving

Solving Non-Linear Ordinary Differential Equations

Rewrite any nth order Ordinary Differential Equations (ODE) as a system of n
first order ODEs.

Given: x(n) = F (x(n−1), x(n−2), . . . , x, t)
Let: x1 = x, x2 = ẋ, x3 = ẍ, xn = x(n−1)

Thus: 
ẋ1

ẋ2
...
ẋn

 =


x2

x3
...

F (xn, xn−1, . . . , x1, t)

 (3.52)

Here, t is the independent variable, and x is the dependent variable.

For an integrable system: (i) Identify the integral of motion I. (ii) Use it to
reduce the order of the system. (iii) Solve the resulting integral. (iv) Invert to
solve for the single valued function.

Linear Analysis

To find the behavior of a system around the fixed points, linearize it around the
fixed points and solve for the behavior.

�̇x = �f(�x) & �x = �x∗ + δ�x (3.53)

�̇x∗ = �f(�x∗) : fixed points (3.54)

δ�̇x = ∇�f(�x∗) δ�x (3.55)

The solution to this ODE is �δẋ = �Deλt where λ are the eigenvalues of �f(�x∗).

Case I λ2 < λ1 < 0 ∈ � Stable Node
Case II λ2 > λ1 > 0 ∈ � Unstable Node
Case III λ1 < 0 < λ2 ∈ � Hyperbolic Point
Case IV (a) λ1,2 = α± iβ a < 0 Stable Spiral
Case IV (b) λ1,2 = α± iβ a > 0 Unstable Spiral
Case V λ1,2 = iw Center or Elliptic Point
Case VI λ1 = λ2 Improper Node

�δx = C1
�D1e

λ1t + C2( �D1t+ �D2)e−λ1t

Case VII λ1 = λ2 = 0, �̇δx = a �δx Degenerate Eigenvalues



66 CHAPTER 3. DYNAMICS AND VIBRATIONS

Nonlinear PDEs

There is little general theory 1

most equations must be solved specifically.

Soliton Solution: Assume a solution of the form u(x, t) = f(x − ct) so that
u,x = f ′ and u,t = −cf ′. Solve the soliton wave solution.

Similarity Solution: test for scale invariance of each variable xi = kαx solve
for the α and find the constant relations. Use these new characteristics to
see new ODEs.

Integrals of Motion: In general τ,t +χ,x where τ and χ are functions. To use
this method, rewrite the PDE in conservation law form. Integrate to the
boundaries.

Canonical Perturbation Theory

H(I, θ) = H0(I) + εH1(I, θ) + ε2H2(I, θ) . . . (3.56)

To solve: (1) expand all dependent variables in a power series in ε, (2) Stipulate
for ε = 0 get H(I, θ) = H0(I). (3) Equate orders of ε. (4) Solve the resulting
ODEs.

Mappings

The analysis of mappings is similar to the analysis of systems of differential
equations.

�xn+1 = �T (�xn, t) (3.57)

Maps are area preserving if the Jacobian of the mapping function is 1.
The fixed points occur when

�x∗ = �T (�x∗, t). (3.58)

Mappings can also be represented in phase space relative to the eigenvalues
of the linearized mapping at the fixed points.

δx = xi − x∗ δy = yi − y∗ (3.59)

δ�xi+1 =
(
f,x f,y
g,x g,y

)
δ�xi = λ�ζ (3.60)

1Linear Partial Differential Equations: PDEs are differential functions of two or
more independent variables. General Behaviors of Linear PDEs can be solved by eigenfunc-
tion expansion if the boundary conditions are appropriate. Assume a solution of the form
u(x, t) =

∑
Cn(t)einx. In general boundary conditions and initial conditions need to be

given. Diffusive: The amplitude decreases in time. Wave Like: The amplitude and wave
speed remain constant in time. Dispersive: The energy of the wave remains constant while
the amplitude and wave speed change with time.
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The behavior of this area preserving linearized mapping in phase space depends
on the eigenvalues.

Case I: tr[T ] > 2; λ1&λ2 > 0 or λ1&λ2 < 0 -Hyperbolic fixed point
Case II: tr[T ] < 2; λ1,2 = e±iα -Elliptic Fixed point

Case III: tr[T ] = 2; λ1,2 = ±1 -Parabolic Case

Controlling Chaos

If a system depends on a parameter its trajectories can be kept near or on
the unstable fixed point. �xn+1 = F (xn(p)) where p is the parameter. First,
linearize about the fixed point such that δ�xn = M̃�xn. For δ�xn+1 to be on
the stable manifold choose p sot that �xn+1 is on a stable eigenvector �ζs of the
transform function M̃ . 2

Expand around the fixed point for the value p.

�x∗(p) = �x∗(0) +
∂�x∗
∂p

p+ O(p2) (3.65)

Define �g = ∂1x∗
∂p . Thus, �g is the direction that the fixed point moves as p changes.

Then:

�xn+1 ≈ p�g + M̃ · (�xn − p�g) (3.66)

3.3 Random Processes

3.3.1 References

• Random Vibrations

• Probability, Random Variables and Stochastic Processes [17]

2Dyadic Representation The transform tensor can be written in dyadic form.

M̃ = λ1
�ζ1 �f1 + λ1

�ζ2 �f2 + . . . (3.61)

Where λ are the eigenvalues, �ζ are the eigenvectors, and �f2 are the covariant base vectors.
Using the orthogonality of the eigenvectors the values of the base vectors can be found for the

given dyadic M̃ .

M̃ · �ζ1 = λ1
�ζ1 = (λ1

�ζ1 �f1 + λ1
�ζ2 �f2 + . . .) · �ζ1 (3.62)

thus fiζj = δij — the kronecker delta.
Using the dyadic representation. The parameter p must be chosen such that �xn+1 is per-

pendicular to �fu. Therefore, set �fu · �xn+1 = 0.[
p�g + (λu

�ζu �fu + λs
�ζs �fs + . . .) · (�xn − p�g)

]
· �fu = 0 (3.63)

Here λu is an unstable eigenvector while λs is stable.

p =
λu

λu − 1

�fu · �xn

�fu · �g
(3.64)
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• Random Processes, Prof. Rimas Vacaitis, CU E6220, Fall 2000

3.3.2 Glossary

Single Random Variables: Variables which are random.

Random Variable (χ): is a function such that for every x both real and
complex there exists a probability of χ = x.

Discrete Random Variable: is a variable whose sample space consists
of integer values n ∈ 1, 2, 3, . . ..

Probability Mass Function: the probability that χ = x.

0 ≤ Pχ(x) ≤ 1 (3.67)∑
allx

Pχ(x) = 1 (3.68)

Bernouli Distribution: The random variable κ is definded within the
sample space: S = {0, 1}.

Pκ(k) =

 p k = 1
1− p k = 0

0 else
(3.69)

Poisson Distribution: A random variable defined in the sample space
S = {0, 1, 2, , 3, . . .}. It may be used to count the number of occur-
rences of some event in a given time interval (0, t)

PN (n) =
{

(λt)ne−λt

n! n = 0, 1, 2, . . .
0 else

(3.70)

Continuous random variable: is defined in the sample space S ∈ �.

Probability: the chance that the random variable is a given value χ = x.

P (a < x < b) =
∫ b

a

fχ(x)dx (3.71)

Cumulative density function:

Fχ(x) = Pχ(χ ≤ x) (3.72)

Fχ(−∞) = 0 and Fχ(∞) = 1 (3.73)

Probability density function:

fχ(x) = lim
∆x→0

Fχ(x+ ∆x)− Fχ(x)
∆x

(3.74)

fχ(x) =
d
dx

Fχ(x) and
∫ ∞

−∞
fχ(x)dx = 1 (3.75)
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Uniform: A random variable χ is uniformly distributed over an interval
a ≤ x ≤ b.

fχ(x) =
{

1
b−a a ≤ x ≤ b
0 else

(3.76)

Gaussian:

fχ(x) =
1√

2πσ2
x

e
−(x−µ)2

2σ2
χ (3.77)

Rayleigh: used for describing the peak values of a random process.

fχ(x) =
x

σ2
x

e−
1
2 ( x

σx
)2

; x > 0 (3.78)

Expected Values: Expected values are a calculation of averages. The nth

statistical moment is:

E[xn] =
∫ ∞

−∞
xnfχxdx (3.79)

The first moment is the mean, the second moment is the mean square, the
third is skewness and the fourth kurtosis.

Variance:

σ2
χ = E[(x− µχ)2] = E[x2]− 2µχE[x] + µ2

χ = E[x2]− µ2
χ (3.80)

Standard of Deviation:

σχ =
√
E[x2]− µ2

χ (3.81)

Joint Probability Distribution

Let X(x) and Y (y) be two random variables.

Joint Probability Distribution:

fXY =
∂2FXY (x, y)

∂x∂y
(3.82)

Single distributions can be recovered from the joint distribution.

fY (y) =
∫ ∞

−∞
fXY (x, y)dx fX(x) =

∫ ∞

−∞
fXY (x, y)dy (3.83)

Cumulative Density Distribution:

FXY =
∫ x

−∞

∫ y

−∞
fXY (ζ, η)dζdη (3.84)

Normalization condition:

FXY =
∫ ∞

−∞

∫ ∞

−∞
fXY (ζ, η)dζdη = 1 (3.85)
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Conditional Distributions: The conditional probability density func-
tion of X given the outcome of the random variable Y .

fX|Y (x|Y=y) =
fXY (x, y)
fY (y)

(3.86)

Statistical Independence: X and Y are independent.

fX|Y (x|Y=y) = fX(x) fXY = fX(x)fY (y) (3.87)

Joint Statistical Moments:

E[XnY m] =
∫ ∞

−∞

∫ ∞

−∞
xnymfXY (x, y)dxdy (3.88)

Covariance:

σXY = E[(x− µX)(y − µY )] = E[XY ]− µXµY (3.89)

Correlation Coefficient:

ρXY =
σXY

σXσY
− 1 ≤ ρXY ≤ 1 (3.90)

if X and Y are independent then ρXY = 0.

The Bivariate Normal Gaussian:

fXY (x, y) =
1

2πσxσy

√
1− ρ2

XY

e
− 1

2(1−ρ2
XY )

{
(x−µX )2

σ2
X

−ρXY
(x−µX )(y−µY )

σXσY
+

(y−µY )2

σ2
Y

}
(3.91)

Multivariate Jointly Distributed Normal Random Variables:

fX1X2...Xn
(x1, x2, . . . , xn) =

1(
1
2π

)n
2

∣∣∣[S]
1
2

∣∣∣exp
[
−1

2
(�x− �m)T [S]−1(�x− �m)

]
(3.92)

S = E[XiXj ]: symmetric covariance matrix.
xi −mi = xi − µi: normalization.

Central Limit Theorem: Let X1, X2, . . . , Xn be a sequence of indepen-
dent random variables with the means µ1, µ2, . . . , µn and variances
σ1, σ2, . . . σn.
Let Sn be the sum of the sequence:

Sn =
n∑

i=1

Xi Msn =
n∑

i=1

µi σsn =
n∑

i=1

σ2
i (3.93)
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As n → ∞ the standardized variable of Sn. By definition the mean
is 0 and the variance is 1.

Zn =
Sn − µsn

σsn
(3.94)

The standardized variable has the following normal distribution:

fzn(z) =
1
2π

e−
1
2 z2

z ∈ [−∞,∞] (3.95)

For any individual distribution of Xi. The distribution of the sum
converges to a normalized gaussian distribution.

Random Process: X(t) is an ensemble of time functions that can be charac-
terized statistically. It is a parameterized family of random variables.

{X(t) ∈ Ω, t ∈ T} (3.96)

is a random process defined in state space Ω that evolves with respect to
the index set T .

Random processes can be specified by a probability density function of
increasing orders of completeness. The nth order is given as below:

fX(t1)X(t2)...X(tn)(x1, x2, . . . , xn) (3.97)

Characteristic functions, statistical moment functions and others can be
used to characterize random processes.

Strongly Homogenous: the complete set of probability functions is in-
dependent of shift of the parametric origin ti → ti + a.

Weakly Homogenous: the first two orders of probability functions are
independent of a parametric origin shift ti → ti + a.

Stationary Process: Homogenous process.

Ensemble Averages: The realizations of random processes X(t) is called the
ensemble. Statistical moments can be calculated accordingly.

Mean:

µx(t) = E[X(t)] =
∫ ∞

−∞
xfX(t)(x)dx (3.98)

Variance:

σ2
x(t) = E[X(t)− µX(t)2] =

∫ ∞

−∞
(x− µX)2fX(t)xdx (3.99)
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Joint: measure of processes at two times X(t1) with X(t2) is the corre-
lation function.

Rx(t1, t2) = E[X(t1)X(t2)] =
∫ ∞

−∞

∫ ∞

−∞
x1x2fX(t1)X(t2)(x1, x2)dx1dx2

(3.100)
also called the Autocorrelation Function. It is always positive
definite.

n∑
j=1

n∑
k=1

αjαkRx(t1, t2) ≥ 0 ∀aj ∈ � (3.101)

Auto covariance:

σXX(t1, t2) = E[{X(t1)− µX(t1)X(t2)− µX(t2)}{x(t2)− µX(t2)}]
= RX(t1, t2)− µX(t1)µX(t2) (3.102)

Autocorrelation Coefficient:

ρXY (t1, t2) =
σXX(t1, t2)
σX(t1)σX(t2)

(3.103)

Stationary Processes: For a stationary random process the probability struc-
ture is invariant to a shift of the time origin. Consequently:

µX(t) = µX = const. (3.104)

σ2
X(t) = σ2

X = const. (3.105)

Thus the autocorrelation function depends only on the time change t2− t1
not the actual times t1 and t2.

RX(t1, t2) = RX(t2 − t1) = RX(τ) where τ = t2 − t1 (3.106)

RX(τ) = Rx(t, t+ τ) = E[X(t) ·X(t+ τ)] (3.107)

σXX = RX(τ)− µX and ρXX(τ) =
σXX(τ)
σ2

X

(3.108)

Properties of correlation functions RX include:

• RX(τ) = RX(−τ) —symmetry

• |RX(τ)| ≤ RX(0) —boundedness

• RX(0) = σ2
X

• limτ→∞RX(τ) = µX for non periodic functions. —limit

Examples of Correlation functions include: RX(τ) = e−a|τ |, RX(τ) =
e−aτ2

, and RX(τ) = e−aτ2
coswt.
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Cross-Correlation Function: For two stationary random processes X(t) and
Y (t):

RXY (τ) = E[X(t)Y (t+ τ)] (3.109)

This is a function of the combined distribution which is hard to find.

Properties include:

• RXY (τ) = RY X(τ) —symmetric

• |RXY (τ)| ≤
√
RX(0)RY (0) —bounded

• limτ→∞RXY (τ) = µXµY except for periodic —limit

Ergodic Processes: The mean and variance of a stationary ergodic process
can be computed using temporal averaging instead of ensemble averaging.
Thus, when random process is ergodic in the mean:

E[X(t)] = 〈X(t)〉 = µx =
1
T

∫ T

0

X(t)dt. (3.110)

This occurs if and only if E[X(t)] = const, E[X(t)X(t− τ)] = RX(τ) and
limT→∞

∫ T

0
RX(τ)dτ = 0 (except for periodic processes).

When a random process is ergodic in the correlation:

E[X(t)X(t+ τ)] = RX(τ) = 〈X(t)X(t+ τ)〉
= lim

τ→∞
1
T

∫ τ

0

X(t)X(t+ τ)dt (3.111)

At τ = 0:

E[X2(t)] = σ2
X =

1
T

∫ T

0

X2(t)dt (3.112)

This occurs if and only if: E[X(t)X(t+τ)] = f(τ), SX(τ, µ) = E{[X(t)X(t+
τ)−RX(τ)][X(t+µ)X(t+τ+µ)−RX(τ)]} = g(τ), and limt→∞

1
T

∫ T

0
SX(T, µ)dµ =

0.

Gaussian Process: A random process for which the joint distribution of

X(t1)X(t2) . . . X(tn) (3.113)

is a joint normal distribution is a Gaussian or normal process. Just as
gaussian random variables are completely characterized by their mean and
variance, the gaussian random process is completely characterized by its
mean and auto correlation functions. The linear combination of a gaussian
process is also a gaussian process.

Fourier Transformation: Fourier transformations as applied to random pro-
cess theory.

Periodic function: f(t) = f(t+ T)
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Fourier Series:

f(t) =
a0

2
+

∞∑
n=1

[
an cos(

2πnt
T

) + bn sin(
2πnt
T

)
]

(3.114)

an =
2
T

∫ T
2

−T
2

f(t) cos(
2πnt
T

)dt and bn =
2
T

∫ T
2

−T
2

f(t) sin(
2πnt
T

)dt

(3.115)
Exponential Form:

f(t) =
∞∑

n=−∞
cne

i2πnt/T and cn =
1
T

∫ T
2

−T
2

f(t)e−i2πnt/Tdt

(3.116)

Fourier Transform As T → ∞ the Fourier Series degenerates into the
Fourier Transform.

f(t) =
∫ ∞

−∞
F (w)eiwtdt and F (w) =

1
2π

∫ ∞

−∞
f(t)e−iwtdt

(3.117)

Piecewise Continuous For a fourier transform to exist a function must
be integrable ∫ ∞

−∞
|f(t)|dt <∞ (3.118)

and also, the discontinuities must be finite

f(t) =
1
2
[f(t+) + f(t−)] (3.119)

Spectral Density Function : Given a stationary random process X(t) the
condition

∫ ∞
−∞ |x(t)|dt <∞ is not satisfied. Thus the fourier transform of

the process does not exist. Nevertheless the transform of the correlation
function is very useful.

Define the non-existent fourier transform of X as

X(w,T) =
1
2π

∫ T

−T

x(t)e−iwtdt (3.120)

with

E[X(w, t)X∗(w, t)] =
1
2π

2 ∫ T

−T

∫ T

−T

Rx(t1 − t2)e−iw(t1−t2)dt1dt2 (3.121)

And
E[X(t1)X∗(t2)] = Rx(t1 − t2) = Rx(τ) (3.122)
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Now, the limits t1 and t2 are related to the period T. By shifting the
period and the area of integration cleverly the result becomes

E[|X(w,T)|2] =
1

(2π)2

∫ 2T

−2T

(2T− |τ |)Rx(τ)e−iwτdτ (3.123)

Taking the limit as T →∞:

lim
T→∞

{
E[|X(w,T)|2]

}
=

1
2π

∫ ∞

−∞
Rx(τ)e−iwτdτ (3.124)

Spectral Density: is defined as this limit.

SXX(w) =
1
2π

∫ ∞

−∞
RX(τ)e−iwτdτ (3.125)

and
RX(τ) =

∫ ∞

−∞
SXX(w)eiwτdw (3.126)

Furthermore at τ = 0: RX(0) = E[X2] = σ2
X

A Spectral density function is both real and even SX(w) = SX(−w),
SXX = 1

π

∫ ∞
−∞RX(τ) coswτdτ . ThusRX(τ) = 2

∫ ∞
0

SXX(w) coswτdτ ,
it is non-negative, and it must decay faster than 1

w to be meaningful
for a physical process.

Narrow band: a process whose spectral density function is narrow, en-
compassing a small finite set of frequencies which are adjacent.

Wide band: a process whose spectral density function is wide, encom-
passing a large finite set of frequencies which are adjacent.

Idealized Gaussian White Noise: A process which encompasses all fre-
quencies – the widest band possible. SXX = s0

Truncated white noise: Bands of frequency are admitted.
Two sided:

SXX(w) =

 s0 w1 < w < w2

s0 −w2 < w < w1

0 else
(3.127)

One Sided.

SXX(w) =
{

2s0 w1 < w < w2

0 else (3.128)

Unit Gaussian Random Variable:

µ = 0 σx = 2 PU (u) =
1√
2π

e
−µ2

2 du (3.129)

Thus

E[un] =
∫ ∞

−∞

un

√
2π

e
−u2

2 du =

{
0 n ∈ {odd numbers}

2
n
2√
π
Γ

(
n+1

2

)
n ∈ {even numbers}

(3.130)
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Joint Moments of Gaussian Random Variables or Random Processes:
Consider a random variable Xj with uj = 0.

E[Xj ] = 0 E[X2
j ] = σ2

xj E[XjXk] = ρxjxk (3.131)

E[XiXjXk] = E[Xk]E[XiXj ] . . . = 0 and
E[XiXjXkXl] = E[XiXj ]E[XkXl] + E[XiXl]E[XkXj ] + E[XiXk]E[XjXl]

+E[Xi]E[XjXkXl] . . .
= ρxixjρxkxl + ρxixlρxjxk + ρxixkρxjxl (3.132)

In general:
E[X1X2 . . . X2m+1] = 0 (3.133)

E[X1X2 . . . X2m+1] =
∑

∀comb. jkrs...

E[XjXk]E[XrXs] (3.134)

There are N combinations where N = (2m)!
m!2m

3.3.3 Manipulation of Stationary Random Processes

Derivation

Given a stochastic (random) process X(t) its derivative is Ẋ(t) = dX
dt . The

derivative of the auto correlation function is a cross correlation:

d
dt
RX(τ) =

d
dt
E[x(t)X(t+ τ)] = E[X(t)Ẋ(t+ τ)] = RXẊ(τ) (3.135)

Similarly, d2

dτ2RX(τ) = RXẌ(τ) again a cross correlation.
The variation τ is arbitrary so it can be rewritten µ = t+ τ and t = µ− τ .

E[X(t)Ẋ(t+ τ)] = E[X(t− τ)Ẋ(t)] (3.136)

now d2

dτ2RX(τ) = −RẊẊ(τ). which is an auto correlation.
If there are no discontinuities in the auto correlation function RXẊ(0) = 0.

Thus X(t) and Ẋ(t) are uncorrelated or orthogonal at any given time t.

Integration

For a random process X(t)

• Converting a random process into a random variable

z =
∫ b

a

X(t)dt (3.137)
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• from random process to random process

z(t) =
∫ t

a

X(s)ds and µz(T ) = E[z(t)] =
∫ t

a

µx(s)ds (3.138)

RXZ(t1t2) =
∫ t2

a

RXX(t1s2)ds2 (3.139)

RXX(t1t2) = E[z(t1)z(t2)] =
∫ t1

0

∫ t2

0

RXX(s1, s2)ds1ds2 (3.140)

• Transforming a process

z(η) =
∫ b

a

X(t)g(t, η)dt and µz =
∫ b

a

X(t)g(t, η)dt (3.141)

RZZ(η1, η2) =
∫ b

a

∫ b

a

RXX(t, s)g(t, η)g(s, η)dtds (3.142)

Statistical Properties of Random Processes

As the random inputs are transmitted through a linear structural system or filter
the output is a narrow band process characterized by that structures response
Y (t) and transformed by the frequency response function H(w).

Expected Rate of Threshold Crossing: Let v(t) be a continuous random
process with zero mean. Where ζ is a threshold level. Postulate that the
structure fails if:

• First Excursion Failure: Y (t) reaches ζ or −ζ for the first time

• Fatigue Failure: Failure si the result of accumulated damage – a fixed
total.

For the second failure postulate, fatigue, counting the number of crossings
in a given time period becomes important. Define a random number η that
characterizes the number of times Y (t) crosses a threshold level ζ either from
above or below.

Crossing times:
η(ζ, t1, t2) (3.143)

Mean:
E[η(ζ, 0, t)] (3.144)

Correlation:
E[η(ζ, 0, t1)η(ζ, 0, t2)] (3.145)
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Let z[t] = 1[Y (t)− ζ] where 1 is the Heaviside Step function.

z(t) =

 1 Y (t) > zeta
1
2 Y (t) = ζ
0 Y (t) < ζ

(3.146)

Using this definition

d
dt
z(t) =

d
dt

1[Y (t)− ζ] = δ[Y (t)− ζ]Ẏ (t) (3.147)

Notice that z[t] is random.

η(ζ, t1, t2) =
∫ t2

t1

|ż(t)|dt =
∫ t2

t1

|Ẏ (t)δ[Y (t)− ζ]|dt (3.148)

E[η(ζ, t1, t2)] =
∫ t2

t1

E{|Ẏ (t)δ[Y (t)−ζ]|}dt =
∫ t2

t1

[∫ ∞

−∞

∫ ∞

−∞
|ẏ|δ(y − ζ)fY Ẏ (y, ẏ)dydẏ

]
dt

(3.149)

E[η(ζ, t1, t2)] =
∫ t2

t1

∫ ∞

−∞
|ẏ|fy,ẏ(ζ, ẏ)dẏdt (3.150)

Determine the rate of threshold crossing per unit time N(ζ, t):

N(ζ, t) =
∫ ∞

−∞
|ẏ|fY Ẏ (ζ, ẏ)dẏ (3.151)

Similarly the correlation function of N(ζ, t)

φNN (ζ, t1, t2) = E[N(ζ, t1)N(ζ, t2)] =
∫ ∞

−∞

∫ ∞

−∞
|ẏ1||ẏ2|fY1Y2(ζ, ẏ1, ẏ2)dẏ1dẏ2

(3.152)
To count only upcrossings of zeta

E[N+(ζ, t)] =
∫ ∞

0

ẏfY Ẏ (ζ, y)dẏ (3.153)

For a stationary random process

E[N+(ζ, t)] =
1
2
E[N(ζ, t)] (3.154)

Upcrossings of Gaussian Random Process

N+(ζ, t) = N+(ζ) Stationary Random Process (3.155)

E[N+(ζ)] =
∫ ∞

0

ẏ
1

2πσyσẏ
e
− 1

2 ( ζ
2

σ2
y

+ ẏ2

σ2
ẏ

)

dẏ =
1

2πσyσẏ
e

−ζ2
2σ2
y

∫ ∞

0

ẏe
− ẏ2

2σ2
ẏ dẏ

(3.156)
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Let µ = ẏ
2σ2

ẏ

, and du = ẏ
σ2
ẏ

dy

E[N+(ζ)] =
1
2π

σẎ

σY
e

−ζ2
2σ2
y (3.157)

Since the variances depend on the spectral density. If the spectral density is
known the upcrossing rate can be found. The zero upcrossing rate occurs at
ζ = 0

E[N+(0)] =
1
2π

σẎ

σY
=

1
2π

[∫ ∞
−∞ w2SY Y (w)dw∫ ∞
−∞ SY Y (w)dw

]
(3.158)

For a narrow band process:

E[N+(0)] = fe =
1
2π

√
2S0w2

0∆w

2§0∆w
=

w0

2π
(3.159)

For a gaussian process: as variance increases the change for upcrossings de-
creases:

N+(ζ)
N+(0)

= e
−ζ2
2σ2
y (3.160)

The Rate of Peaks

Peak: occurs in a sample function Y (t) when Ẏ (t) = 0 and Ÿ (t) < 0

Valley: occurs in a sample function Y (t) when Ẏ (t) = 0 and Ÿ (t) > 0

A Peak Rate [Middleton, Rice].

PR(t) = |Ÿ (t)|δ[Ẏ (t)]1[Y (t)− ζ]. (3.161)

The number of peaks in time t ∈ (t1, t2)

ε[ζ, t1, t2] =
∫ t2

t1

PR(t)dt. (3.162)

The expected total number of peaks in a time interval

E[ε(ζ, t1, t2)] =
∫ t2

t1

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|ÿ|δ|ẏ|1(y−ζ)fY Ẏ Ÿ (y, ẏ, ÿ)dydẏdÿ. (3.163)

Define M [ζ, t] as the number of peaks above ζ per unit time

ε(ζ, t1, t2) =
∫ t2

t1

M [ζ, t]dt. (3.164)

The expected peak rate:

E[M(ζ, t)] = −
∫ ∞

∞
dy

∫ ∞

−∞
dẏ

∫ 0

−∞
fY Ẏ Ÿ (y, ẏ, ÿ)δẏ1(y − ζ)dÿ
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= −
∫ ∞

ζ

∫ 0

−∞
fY Ẏ Ÿ (y, 0, ÿ)ÿdydÿ. (3.165)

To get a total number of points let ζ →∞

E[MT (t)] = −
∫ ∞

−∞

∫ ∞

−∞
fY Ẏ Ÿ (y, 0, ÿ)ÿdydÿ. (3.166)

If Y (t) is a stationary and gaussian process:

fY Ẏ Ÿ (y, 0, ÿ) =
1

(2π)
3
2 |Λ|

exp
{
− 1

2|Λ| (σ
2
2σ

2
3y

2 + 2σ4
2yÿ + σ2

1σ
2
2 ẏ

2)
}
. (3.167)

Here, Λ = σ2
2(σ2

1σ
2
3−σ4

2), σ2
1 = σ2

y =
∫ ∞
−∞ SY Y (w)dw, σ2

2 = σ2
ẏ =

∫ ∞
−∞ wSY Y (w)dw,

and σ2
3 = σ2

ÿ

∫ ∞
−∞ w2SY Y (w)dw.

Substitute values and integrate to find:

E[MT (t)] = E[MT ] =
1
2π

σ3

σ2
=

1
2π

∫ ∞
−∞ w4SY Y dw∫ ∞
−∞ w2SY Y dw

. (3.168)

The Probability Density of a Peak Distribution The conditional prob-
ability distribution function of peak magnitude at time t is equal or than less
than ζ.

FI(ζ, t)
[
1− E[M(ζ, t)]

E[MT (t)]

]
(3.169)

Differentiate to find the probability density function:

fI(ζ, t) =
∂

∂z
F (ζ, t) = − 1

E[MT (t)]
∂

∂ζ
{E[M(ζ, t)]} . (3.170)

Using the Leibnitz rule of differentiation:

FI(ζ, t) = − 1
E[MT (t)]

∫ ∞

−∞
ÿfY Ẏ Ÿ (ζ, 0, ÿ)dẏ. (3.171)

For a stationary random process fI(ζ, t) = fI(ζ). Assume Y (t) is a Gaussian
random process substituting equations given and integrating:

fI(ζ) =
(1− α2)

1
2

√
2πσ1

exp
{
− ζ2

2σ2
1(1− α)2

}
+
αζ

2σ1

{
1 + erf

[
ζ

σ1
(2α−2 − 2)−

1
2

]}
exp

(
− ζ2

2σ2
1

)
(3.172)

where α = E[N+(0)]
E[MT ] = σ2

2
σ2σ3

. α ranges from 0 to 1. If α = 0 for the most part
the process fluctuates above or below zero, since it is stationary some crossings
do occur. If α = 1 the process behaves like a narrow band process, one crossing
per fluctuation.

fI(ζ) ≈ 1√
2πσ1

e−ζ22σ2
1 for α = 0 : Gaussian
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fI(ζ) =
ζ

σ1
e

−ζ2
2σ2

1 for α = 0 : Rayleigh (3.173)

Useful Approximations If reversals can be neglected E[M(ζ)] ≈ E[N+(ζ)]
and E[MT ] ≈ E[N+(0)].

FI(ζ) = − 1
E[N+(0)]

d
dζ

∫ ∞

0

ẏfY Ẏ (ζ, ẏ)dy. (3.174)

For a gaussian random process E[N+(0)] = 1
2π

σẎ
σY

. Thus, if an upcrossing
problem is solved the peak crossing problem is solved automatically. Thus for a
gaussian process sit can be shown quickly that the narrow band peak crossing
distribution is a Rayleigh distribution.

3.3.4 Application and Design

Functions of Random Variables:

Y = g(X) since X is a random variable Y is also a random variable. The
statistical properties of Y depend on X.

For functions whose inverse are also functions.

fY (y) = fX(x)
∣∣∣∣∂x∂y

∣∣∣∣ a ≤ x ≤ b, min g(x) ≤ ymax g(x) (3.175)

For functions whose inverse have n mappings.

fY (y) = n× fX(x)
∣∣∣∣∂x∂y

∣∣∣∣ (3.176)

Single Degree of Freedom System

• Equation of motion: mẍ+cẋ+kx = f(t) or mẍ+c(ẋ−x0)+k(x−x0) =
0. In standard form y = x− x0 and mÿ + cẏ + ky = −mẍ0 = f(t)

For convenience let w0 =
√

k
m , ccr = 2

√
km and ζ = c

ccr
. Thus the

equation of motion can be written generally as:

ẍ+ 2ζw0ẋ+ w2
0x =

f(t)
m

. (3.177)

• Frequency Response Method: f(t) = F0eiwt. The equation can be
solved as x(t) = F0H(w)eiwt. Where the frequency response function is
H(w) = 1

m[w2
0−w2+2iζw0w]

. Often the frequency response function.

|H(w)|2 =
1

m2[(w2
0 − w2)2 + 4ζ2w2

0w
2]
. (3.178)



82 CHAPTER 3. DYNAMICS AND VIBRATIONS

• Arbitrary Input Impulse Response function f(t) is arbitrary. The solu-
tion can be found using Duhamel’s integral:

x(t) = Ce−(ζ+i
√

1−ζ2)wt +
∫ t

0

f(τ)h(t− τ)dτ. (3.179)

The impulse response function

h(t− τ) =

{
1

mw0

√
1−ζ2

exp(−ζw0t) sin(
√

1− ζ2w0t) t > 0

0 t < 0
(3.180)

The frequency response function and impulse response function are fourier
transform pairs.

H(w) = F{h(t)} =
∫ ∞

−∞
h(t)eiwtdt and h(t) =

1
2π

∫ ∞

−∞
H(w)eiwtdw.

(3.181)

Response of a Single Degree of Freedom System to Random Exci-
tation The same equation of motion governs a system with random excitation.
If the input is random the output is also random. The solution can be found in
the time domain using Duhamel’s integral

X(t) = De(−ζ+i
√

1−ζ2)w0t +
∫ t

0

F (τ)h(t− τ)dτ (3.182)

Assume that the effect of the initial condition has died down and the resulting
random response is X(t) =

∫ t

0
F (τ)h(t − τ)dτ . The expected values of the

random variable X(t) can be describe the random variable.

E[X(t)] =
∫ t

0

E[F (τ)]h(t− τ)dτ

E[X(t1)X(t2)] =
∫ t1

0

∫ t2

0

E[F (τ1)F (τ2)]h(t− τ1)h(t− τ2)dτ1dτ2

...

E[X(t1)X(t2) · · ·X(tn)] =
∫ t1

0

· · ·
∫ tn

0

E[F (τ1)F (τ2) · · ·F (τn)]h(t1 − τ1)

· · ·h(t2 − τ2)h(tn − τn)dτ1dτ2 · · ·dτn (3.183)

If the forcing function F (t) is a Gaussian Random Process only the first and
second moments are needed. The mean E[F (τ)] = µF is constant for station-
ary processes. E[X(t)] = µF

∫ t

0
h(τ)dτ , for t > 0. As t → ∞ the integral∫ t

0
h(τ)dτ = H(0). Thus, µx = µFH(0) = µF

k since H(0) = 1
mw2

0
= 1

k . Usually
random processes are constructed such that µF = 0

Stationary and Gaussian Excitation The response is also gaussian if
the structure is linear. If the mean is assumed to be zero then E[F (τ1)F (τ2)] =
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RFF (τ1 − τ2). The spectral density is related to the autocorrelation function
RFF (τ1−τ2) =

∫ ∞
−∞ ΦFF (w)eiw(τ1−τ2)dw. For convenience set E[X(t1)X(t2)] =

ΦXX(t1, t2).

ΦXX(t1, t2) =
∫ t1

0

∫ t2

0

dτ1dτ2
∫ ∞

−∞
dwΦFF (w)eiw(τ1−τ2)h(t− τ1)h(t− τ2)

(3.184)
Integrate over τ1 and τ2 to find

ΦXX(t1, t2) =
∫ ∞

−∞
ΦFF (w)H(w, t1)H∗(w, t2)eiw(t1−t2)dw (3.185)

where H(w, t) =
∫ t

0
h(u)eiwudu, h(u) is the impulse response function.

H(w, t) =
∫ t

0

1
mwd

eζw0t sin(wdt)e−iwtdt where wd = w0

√
1− ζ2 (3.186)

H(w, t) = H(w)(1− (cos(wdt) +
ζw0 + iw

wd
sin(wdt))e(−ζw0+iw)t) (3.187)

Taking the limit
lim

t→∞
H(w, t) = H(w) (3.188)

Using these equations the response correlation function can be written in terms
of H(w) but the expression is quite lengthy. The means square can be found
similarly and is also lengthy.

Notice, (1) at the beginning the response is non-stationary due to a station-
ary input, (2) for a large t1 and t2 the response is stationary.

ΦXX(t1, t2) → RXX(τ) =
∫ ∞

−∞
ΦFF (w)|H(w)|2eiwτdw (3.189)

E[X2(t)] → RXX(0) =
∫ ∞

−∞
ΦFF (w)|H(w)|2dw (3.190)

(3) At t = 0, E[X2(t)] = 0, assume the system is initially at rest,

RXX(τ) =
∫ ∞

−∞
SXX(w)eiwτdw, thus SXX(w) = ΦFF (w)|H(w)|2. (3.191)

Now enough information exists to find all the information about a single degree
of freedom process, after a long period of time.

For example, consider idealized white noise.

RFF (τ) = 2πS0δ(τ) and ΦFF (w) = S0 (3.192)

The bandwidth at half power can be used to describe the damping 2ζw0 =
∆w 1

2 . The fundamental damping coefficient is calculated from the fundamental
frequency.

RXX(0) = σ2
X =

∫ ∞

−∞
SXX(w)dw =

∫ ∞

−∞
ΦFF (w)|H(w)|2dw (3.193)
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For idealized white noise

σ2
X =

s0
m2

∫ ∞

−∞

dw
(w2

0 − w2)2 − 4ζ2w2
0w

2
. (3.194)

This can be solved by residue theory. σ2
X = S0π

2ζm2w3
0
. The gaussian white noise

idealization is especially applicable when damping is light. It is not suitable for
all problems. When the idealization is valid

RXX =
πΦFF (w0)
2m2ζw3

0

(3.195)

Therefore, a one degree of freedom system can be solved either in time
domain from the time history:

µX = X̄ =
1
T

∫ T

0

x(t)dt ≈ 1
N

N∑
i=1

xi

E[X2] =
1
T

∫ T

0

x2(t)dt ≈ 1
N − 1

N∑
i=1

x2
i (3.196)

Now σX =
√
E[x2]− µ2

X and σẊ =
√
E[ẋ2]− µ2

Ẋ
. Take the derivative of the

time domain numerically. Thus for a gaussian process:

fF (z) =
1√

2πσ2
F

e
−(z−µF )2

2σ2
F forcing function

fX(z) =
1√

2πσ2
X

e
−(z−µF )2

2σ2
X response x

E[N+(ζ)] =
1
2π

σ̇X

σX
e
− ζ2

2σ2
X upcrossing rate

fI(ζ) =
ζ

σ2
X

e
−ζ2
2σ2
X peak rate (3.197)

Or it can be solved from frequency domain. First solve for the static re-
sponse, and then the dynamic:

SXX(w) = ΦFF (w)|H(w)|2
SẊẊ(w) = w2ΦFF (w)|H(w)|2

σX =

√
ΦFF (w0)π
2m2ζw3

0

σẊ =

√
ΦFF (w0)π
2m2ζw0

(3.198)

Forcing function, upcrossing and peak rate can be solved as before.
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Multi-Degree of Freedom System

Assume the system is linear, the inputs are stationary, ergodic and Gaussian.
Analysis can be performed either by the direct method or by uncoupling the
equation using normal modes.

The general governing equation in terms of the mass matrix [M ] the stiffness
matrix [K] the damping matrix [C] and the forcing function �F (t) is:

[M ]�̈x+ [K]�x+ [C]�̇x = �F (t). (3.199)

Frequency and impulse response functions The frequency response
function and impulse response function can also be given as a matrix.

�x = [H(w)]eiwt1 if F = 1eiwt where 1 =

 1
1
1

 (3.200)

Substituting into the equation of motion

[H(w)] = (−w2[M ] + iw[c] + [k])−1. (3.201)

The impulse response function and frequency response function are Fourier
Transform pairs.

The Direct Method

• Given a any reasonably well behaved forcing function, the response can
be found as:

{x(t)} =
∫ ∞

−∞
[h(θ)]{F (t− θ)}dθ (3.202)

• The response at a particular location j

Xj(t) =
n∑

k=1

∫ ∞

−∞
hjk(θ)Fk(t− θ)dθ (3.203)

• The mean value response at that location then is:

µxj = E[Xj(t)] =
n∑

k=1

∫ ∞

−∞
hjk(θ)E[Fk(t− θ)]dθ (3.204)

• Since the forcing function is a stationary process, its mean is constant

µxj =
n∑

k=1

µFk

∫ ∞

−∞
hik(θ)dθ =

n∑
k=1

µFkHjk(0) {µx} = [H(0)]{µf}.

(3.205)
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• The autocorrelation function is formulated similarly

[Rx(τ)] = E[{X(t)} · {X(t− τ)}T ]

=
∫ ∞

−∞

∫ ∞

−∞
[h(θ1)]E[{F (t− θ1)}{F (t+ τ − θ2)}T ][h(θ2)]dθ1dθ2

(3.206)

• No the spectral density response can be found since

[Sx(w)] =
1
2π

∫ ∞

−∞
[Rx(τ)]eiwτdτ, [SF (w)] =

1
2π

∫ ∞

−∞
[RF (τ)]eiwτdτ

(3.207)
Combining the response spectral density definitions with the autocorrela-
tion function:

[Sx(w)] = [H(w)][SF (w)][H∗(w)]T (3.208)

Spectral densities and cross spectral densities are included in this formu-
lation.

• The variance and covariance (for a zero mean)

σ2
xi = Rxi(0) =

∫ ∞

−∞
Sxixi(w)dw and σxixj

∫ ∞

−∞
Sxixj (w)dw. (3.209)

Normal Mode Method Solve the harmonic undamped system

[M ]{ẍ}+ [k]{x} = 0 let {x} = {ψ}eiwt (3.210)

Solve the eigenvalue problem to find the natural frequencies and modes.
Modal response Let [Ψ] be the matrix comprised of all coordinate vectors

{ψ}. Let {x} = [Ψ]{Y }, where Y are the generalized coordinates. Substituting
into the governing equation:

[M ][Ψ]{Ÿ }+ [C][Ψ]{Ẏ }+ [k][Ψ]{Y } = F (3.211)

Multiply by the transpose of the eigenvector matrix to uncouple the equation

[Ψ]T [M ][Ψ]{Ÿ } + [Ψ]T [C][Ψ]{Ẏ }+ [Ψ]T [k][Ψ]{Y } = [Ψ]TF (3.212)

Now the generalized mass Mi, generalized stiffness, generalized (structural)
damping, and generalized force can be formulated:

Ÿj + 2ζjwj Ẏj + w2
jYj = Fj (3.213)

The solution for each mode are then Yj(t) =
∫ ∞
−∞ hj(τ)Fj(t − τ)dτ . If all

the generalized responses are know the final response can be recalculated using
the modal matrix. Or statistical properties can be found for each mode and
combined by some scheme which presents an adequate approximation.
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Linear Continuous System

input →
Structure
· Impulse influence function h(�r, �ρ, t)
· Frequency influence function H(�r, �ρ, w)

→ output

where �ρ and �r are position vectors of input and output respectively. h(·) and
H(·) are fourier transform pairs.

h(�r, �ρ, t) =
1
2π

∫ ∞

−∞
H(�r, �ρ, w)eiwtdw, H(�r, �ρ, t) =

∫ ∞

−∞
h(�r, �ρ, t)e−iwtdt

(3.214)
The value of the response functions are zero if the position vectors are not in
the domain.

Random response to excitation applied to a point If F (�ρ, t) is the
only input at �ρ. Then F (x, t) = F (t)δ(x− a).

Syy(�r, w) = H∗(�r, �ρ, w)H(�r, �ρ, w)SFF (�ρ, w) (3.215)

Response of continuous structures to many direct inputs

Sww(�r1, �r2, w) =
N∑

j=1

N∑
k=1

H∗(�r1, �ρj , w)H(�r2, �ρk, w)SFF (�ρj , �ρk, w) (3.216)

Distributed input to a continuous structure and the corresponding
random response

• Given a continuous random input P (�ρ, t) and a random response W (�r, t)
and initial conditions W (�r, 0) = 0 and P (�ρ, t) = 0 ∀t < 0 . The response
then is:

W (�r, t) =
∫ t

0

∫
R

h(�r, �ρ, t− τ)P (�p, τ)d�ρdτ (3.217)

• Assuming the inputs are stationary the statistical properties can be cal-
culated as follows:

µw(�r, t) = E[w(�r, t)] =
∫ t

∞

∫
R

h(�r1, �ρ, t− τ)E[P (�p, τ)]d�ρdτ

Rww(�r1, t1, �r2, t2) =
∫ t1

−∞

∫ t2

−∞

∫
R

∫
R

h(�r1, �ρ1, t1 − τ1)h(�r2, �ρ2, t2 − τ2)

Rpp(�ρ1, �ρ2, τ1 − τ2)dρ1dρ2dτ1dτ2 (3.218)

For convenience define the fourier transform of the correlation as

Φpp(�ρ1, �ρ2, w) =
1
2π

∫ ∞

−∞
Rpp(�ρ1, �ρ2, u)e−iwudu. (3.219)
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• Recalling the fourier transforms of the cross spectral density of the re-
sponse, and of the input response function find.

Sww(�r1, �r2, w) =
∫

R

∫
R

Φpp(�ρ1, �ρ2, w)H(�r1, �ρ2, w)H∗(�r2, ρ2, w)dρ1dρ2

(3.220)

• For practical applications the locations of that the input acts ρ1, ρ2 may
also be random. Usually P (�ρ, t) can be assumed to be at least weakly
homogenous in space.

Φpp(�ρ1, �ρ2, w) = Φpp(�ρ1 − �ρ2) = Φpp(�u,w) (3.221)

and
Rpp(�ρ1, �ρ2, τ) = Λ(ρ1 − ρ2, τ) = Λ(�u,w) (3.222)

Where �u = �ρ1 − �ρ2 and τ = t1 − t2.

• The fourier transform can be performed in the space domain if the struc-
ture is infinite

Spp(�u,w) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
Ψ(�k, w)ei1k·1ud�k (3.223)

where �k is the wave number vector, and Ψ(�k, w) is the multidimensional
wave number spectra. The inverse is:

Ψ(�k, w) =
1

(2π)α

∫ ∞

−∞
· · ·

∫ ∞

−∞
Spp(�u,w)e−i1k·1ud�u (3.224)

where α is the number of dimensions. Ψ(·) is sometimes called the wave
energy spectra.

• The three dimensional version is most often used. Applications of this
theory include 3-D elasticity, acoustics, geophysics and turbulence analysis
where the domain can be assumed to be infinite.

�ρ = xî+ yĵ + zk̂, �k = k1î+ k2ĵ + k3k̂ and �u = ξî+ ηĵ + σk̂(3.225)

where k1, k2 and k3 are wave numbers and ξ = x1 − x2, η = y1 − y2 and
σ = z1 − z2. The spectral density function of the input then is:

Spp(�u,w) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Ψ(k1, k2, k3, w)ei(ik1ξ+k2η+k3σ)dk1dk2dk3

(3.226)
The inverse can be formulated similarly.

Φpp(�u,w) =
1

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
S(ξ, η, σ, w)e−i(ik1ξ+k2η+k3σ)dk1dk2dk3

(3.227)
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The two dimensional formulation which can be applied to plates or shells
is similarly formulated. The one dimensional formulation useful for infi-
nite bars, infinite beams or infinite springs also follows similarly.

Normal Mode Approach to Finite Structures. Assume small damping
and orthogonal modes. the general equation of motion is

L[w] + c(ẇ) +ms(w) = P (�ρ, t) (3.228)

here L is the structural operator. Typical values included −T ∂2

∂x2 for a taut
string, EI ∂4

∂x4 for a beam and D( ∂4

∂x4 + 2 ∂4

∂x2∂y2 ) + ∂4w
∂y4 .

The influence response function h(�r, �ρ, t) must satisfy the governing equation.

L[h] + c(ḣ) +ms(h) = δ(�r − �ρ)δt (3.229)

Assume a modal solution

h(�r, �ρ, t) =
∞∑

m=1

am(�ρ, t)Ym(�r) (3.230)

note, each summation is also over the domain. substituting into the equation
find:

∞∑
m=1

amL[Ym] + c

∞∑
m=1

ȧmYm +ms

∞∑
m=1

ämYm = δ(�r − �ρ)δt (3.231)

First find the value of the normal modes by solving the free vibration solution,
notice that the equation can be uncoupled if the nodes are normal so the free
modal response of the uncoupled system is of interest.

m2b̈mYm + bmL[Ym] = 0 (3.232)

For undamped free vibration b̈m = −w2
mbm. The characteristic condition then

is
msw

2
mYm = L[Ym] (3.233)

Use orthogonality to find the generalized quantities.∫
R

· · ·
∫

R

msYm(�r)Yn(�r)dr =
{
Mn m = n
0 m �= n∫

R

· · ·
∫

R

cYm(�r)Yn(�r)dr =
{
cn m = n
0 m �= n

(3.234)

Substitute this into the governing equation.

Mmäm(t, �ρ) + cmȧm(t, �ρ) +Mmw
2
mam(t, �ρ) = Ym(ρ)δ(t) (3.235)
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Assume that am = 0 ∀t < 0. The solution for am then by separation of variables
is

am(t, �ρ) =
{
Ym(�ρ) exp(−ρmwmt) sin(wΦ

mt) �ρ ∈ R & t ≥ 0
0 �ρ /∈ R or t < 0 (3.236)

where ρm = cm
2Mmwm

and wΦ
m = wm

√
1 − ρ2

m. Also am = Ym(�ρ)hm(t) ∀�ρ, t ∈ D.
Where D is the domain where �ρ ∈ R and t ≥ 0. Now the impulse response
function reach mode can be written as:

h(�r, �ρ, t) =
∑

Ym(�r)Ym(�ρ)hm(t) ∀�ρ, t ∈ D (3.237)

The frequency influence function is found by taking the fourier transform

H(�r, �ρ, w) =
∫ ∞

−∞
h(�r, �ρ, t)eiwtdt =

∑
m=1

Ym(�r)Ym(�ρ)Hm(w) (3.238)

Where
Hm(w) =

1
Mm(w2

m − w2 + 2iζmwwm)
(3.239)

Excitation is a stationary random process with zero mean The cross
spectral density then is

Sww(�r1, �r2, w) =
∞∑

m=1

∞∑
n=1

Ym(�r1)Yn(�r2)Hm(w)H∗
n(w)Imn(w) (3.240)

where
Imn(w) =

∫
R

∫
r

Φ(�ρ1, �ρ2, w)Ym(�ρ1)Yn(�ρ2)d�ρ1d�ρ2 (3.241)

The spectral density of the response then occurs when �r1 = �r2 = r

Sww(�r, w) =
∞∑

m=1

∞∑
n=1

Ym(�r)Yn(�r)Hm(w)H∗
m(w)Imn(w) (3.242)

The spectral density is real so Imn = I∗mn.

Fatigue

Fractional damage is defined as

Si =
ni

Ni
(3.243)

where Si is the stress amplitude ni are the number of cycles applied and Ni are
the number of cycles to failure. Total Damage then is the sum

D =
k∑

i=1

ni

Ni
(3.244)



3.3. RANDOM PROCESSES 91

when D ≥ 1 the material fails. This linear damage is known as Miner’s Rule
is a fine rough estimate. The S −N relation is based on a constant amplitude
test.

Fatigue damage caused by random narrow band stresses (a) Discrete
Stress Spectrum. Define ni as the number of peaks in the stress range ∆Si. The
fraction of stress applied

fi =
ni

n
(3.245)

where n is the total number of cycles. Also fi is the probability that a single
stress range will have the magnitude Si. By definition

∑
fi = 1. Then the total

fatigue damage defined in this term is

D =
k∑

i=1

ni

Ni
= n

k∑
i=1

fi

Ni
. (3.246)

(b) For a continuous stress spectra. For a narrow band process usually assume
the Rayleigh distribution of stress ranges. The fraction of stress then in a given
range s→ s+ ∆s is

fi = fs(s)∆s where fs(s) =
s

σ2
s

e
−s2
2σ2
s (3.247)

The corresponding damage is

D = n

k∑
i=1

fs(s)∆si

N(si)
as ∆s→ ds thus D =

∫ ∞

0

fs(s)
N(s)

ds. (3.248)

Using only the linear portion of the S−N curve NSm = A where A and m are
found experimentally. Substituting this into the equation

D =
n

A

∫ ∞

0

Smfs(s)dS =
n

A

∫ ∞

0

Sm+1

σ2
s

e
−s2
2σs ds. (3.249)

Solving the integral

D =
{ V+τ

A (
√

2σs)mΓ(m
2 + 1) where A is based on amplitude

V+τ
A (2

√
2σs)mΓ(m

2 + 1) where A is based on range.
(3.250)
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Chapter 4

Mathematical Methods

4.1 Partial Differential Equations

4.1.1 References

• Distribution Theory and Transform Analysis [22]

• Mathematical Methods in Physics and Engineering [5]

• Elementary Applied Partial Differential Equations [10]

• PDE, Prof. Polivani, CU E3102 , Spring 1998

• PDE, Alex Casti, CU E4200, Fall 1999

4.1.2 Glossary

Inner Product:

< f, φ > = < f(t), φ(t) > ≡
∫ ∞

−∞
f(t)φ(t)dt (4.1)

Function: a rule which relates independent variables to their dependent coun-
terparts.

Testing Function: a guess as to the solution of the function. The space of
testing functions D consists of all complex-valued functions φ(t) that are
infinitely smooth and zero outside some finite interval.

Any complex-valued function f(t) that is continuous ∀ t and zero outside
a finite interval can be approximated uniformly by testing functions.

|f(t)− φ(t)| ≤ ε given ε > 0 ∀ t (4.2)

Functional: a rule which assigns a number to each a function in a given set of
testing functions.

93
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Distribution: functionals which are linear and continuous

< f, αφ1 + βφ2 > = α < f, φ1 > +β < f, φ2 > (4.3)

lim
ν→∞

|< f, φ > − < f, φν >| = 0. (4.4)

Local Distribution: Distributions that can be generated from locally inte-
grable functions.

Delta Functional: Not a local distribution.

< δ, φ > ≡ φ(0) (4.5)

The shifting property:

< δ(t− τ), φ(t) > = < δ(x), φ(x+ τ) > = φ(t). (4.6)

The first derivative:

< δ(1)(t), φ(t) > ≡ − φ(1)(0) (4.7)

Convergence: there exists a Nk such that for every ν ≥ Nk:

|Dkφν(t)| ≤ ε. (4.8)

Equilibrium or Steady State: Independent of time.

Boundary Conditions: The values of the equation and/or its derivatives at
the boundary.

Dirichlet: First kind φ = 0; second kind dφ
dx = const.

Principle of Superposition: If u1 and u2 satisfy a linear homogenous equa-
tion, then an arbitrary linear combination of them c1u1+c2u2 also satisfies
the same equation.

Inner product: Again, same as for one dimension only the integral is over the
space �n.

Sturm-Liouville Problems: Equations of the form(
py

′
)′
− qy + λpy = 0 (4.9)

with boundary conditions of the following type

1. y(a) = 0 or y(b) = 0

2. y
′
(a) = 0 or y

′
(b) = 0

3. y
′
(a)− σ1y(a) = 0 or y

′
(b)− σ1y(b) = 0 where σ1 > 0, σ2 > 0

4. y(a) = y(b) and p(a)y
′
(a) = p(b)y

′
(b)
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5. y(a) and y
′
(a) are finite and p(a) = 0 or y(b) and y

′
(b) are finite and

p(b) = 0.

The solutions to the Sturm Liouville Problems form an orthogonal set.

Adjoint Operators:

u (L(v))− v (L∗(u)) =
d
dx

[
ρ

[
u

dv
dx

− v
du
dx

]]
(4.10)

∫ b

a

[u (L(v))− v (L∗(u))] dx =
[
ρ

[
u

dv
dx

− v
du
dx

]]b

a

(4.11)

If
[
ρ

[
u dv

dx − v du
dx

]]b

a
= 0 then L and L∗ are adjoint. If L = L∗ then the

operation L is self adjoint.

< u,L(v) >=< v,L∗(u) > (4.12)

4.1.3 Solution Approaches

Boundary Value Problems: Separation of Variables ([5]:170–267)

For a Sturm-Liouville type problem with homogenous boundary conditions the
solution can be assumed to depend on a product of functions of the separate
independent variables. For example: u(t, θ) = G(t)Ψ(θ). The resulting odes
can be solved and recombined to form the solution.

Distributions: Their Definition and Basic Properties ([22]:1–35)

A distribution is a more appropriate method of representing physical quantities
since instantaneous amounts cannot be measured. Any uniform function can be
represented by a series of testing functions.

Testing Functions and Distributions can be applied to systems of Several
Variables. For a testing function of several variables ti differentiated to order
k̂ = {k1, k2, . . . , ki, . . . , kn}.

Dkφ(t) ≡ ∂k1+k2+...+kn

∂tk1
1 ∂tk2

2 · · · tknn

φ(t1, t2, . . . , tn) (4.13)

Two distributions f and g are equal if

< f, φ > = < g, φ > (4.14)

for every testing function φ(t) in D .
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Some Operations of Distributions:

Addition: < f + g, φ > ≡ < f, φ > + < g, φ >

Multiplication by Constant: < αf, φ > ≡ < f, αφ >

Shifting: < f(t− τ), φ(t) > ≡ < f(t), φ(t+ τ) >

Transposition: < f(−t), φ(t) > ≡ < f(t), φ(−t) >

Multiplication of independent Variable by a Constant:

< f(αt), φ(t) >≡
〈
f(t),

1
an

φ

(
t

a

)〉
(4.15)

Multiplication by an Analytic Function:

〈fg, φ〉 ≡
∫
�n

f(t)g(t)φ(t)dt (4.16)

Green’s Functions ([10]:370–433, 495–521)

Given L(u) = f then u =
∫
G(x, x0)f(x0)dx0 where LG = δ(x− x0).

Use eigenfunction expansion to prove self adjointness of the Laplacian.∫
R

(v∇2u+ u∇2v)dxdy =
∮

(u(∇v)− v(∇u)) · �ndS

=
∫

R

(−φ1λ
2
2φ2 + φ2λ

2
1φ1)dxdy

= (λ2
1 − λ2

2)
∫

φ1φ2dxdy = 0 (4.17)

The eigenfunctions are orthogonal so the equality is true.

4.1.4 Examples of Linear Partial Differential Equations

Heat Equation ([10]:1–18)

Heat energy is conserved over an arbitrary subregion: rate of change of eat
energy = heat energy flowing across the boundaries per unit time + heat energy
generated inside per unit time.

c(�x)ρ(�x)
∂�u

∂t
= ∇ · (K0(�x) ∇�u) +Q (4.18)

ρ: density
c: specific heat
Q: Heat Source
K0: Proportionality constant between heat flux and the change in temperature
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per unit length, thermal conductivity. From Fourier’s law of Heat Conduc-
tion: φ(�x) = −K0(�x)∇u.

Boundary conditions and initial conditions need to be satisfied to solve the
problem, homogenous boundary conditions are amenable to separation of vari-
ables.

Vibrating Strings and Membranes ([10]:130–149)

Using conservation of linear momentum for perfectly elastic springs:

ρ0(�x)
∂2�u

∂t2
= T0∇2�u+Q(�x, t)ρ(�x) (4.19)

D’Alembert’s solution is in the form u(x, t) = R(x − ct) + S(x + ct) where
R and S are some functions which are differentiable and satisfy the boundary
conditions.

Laplace Transform ([13]:525–529,[10]:568–598)

The Laplace transform of the function f(t) is:

L[f(t)] = F (s) =
∫ ∞

0

f(t)e−stdt (4.20)

Use the Heaviside unit step function
(
H(t− b) =

{
0 t < b
1 t > b

)
to force function

f(t) to be 0 when t < 0.
The derivatives of this distribution are then used to solve the partial differ-

ential equations:
L[f ′(t)] = sF (s)− f(0) (4.21)

L[f ′′(t)] = s2F [s]− sf(0)− f ′(0) (4.22)

Solve the resulting transformed PDE for F (s) and use the inverse transform to
find f(t).

L−1[F (s)] = f(t) (4.23)

4.2 Numerical Methods

4.2.1 References

• Applied Numerical Analysis [9]

• Complexity, Prof. Henrik Wozinkowski, CU W4241, Fall 1999

• Numerical Methods, Prof. Wright, CU E4300, Spring 2000
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4.2.2 Glossary

Complexity: the minimum time needed to solve a problem. If no discrete
complexity is known find lower and upper bounds on computing time.
Assume real number model when calculating complexity. Consequently,
complexity does not depend on the algorithm or size of numbers. It is
controlled only by the computational difficulty of the problem and the set
of permissible operations.

Algebraic Complexity: the minimum time needed to solve a problem when
complete information is given and exact solutions can be found.

Real Number Model: Arithmetic operations can be performed exactly with
unit cost. No matter how large the numbers being operated upon are the
cost of the operation remains the same. The assumption is valid since
most modern computers use floating point arithmetic.

Floating Point Arithmetic: Every number is represented by x = m2c where
1
2 ≤ ‖m‖ < 1 and c ∈ Integer. The error in the floating point operation
is related to the mantissa bit t.

m ≈
t∑

i=1

bi2−t bi ∈ [0, 1]

If t = ∞ no rounding errors would exists. But t is finite and consequently
fl(x) = x(1− εx) where ‖εx‖ = 2−t.

Numerical Stability: the computed result is the exact solution for a slightly
perturbed data.

Roundoff Error: Is related to how a computer holds numbers and is generally
on the order of 10−12. It is generated by operations, addition, multiplica-
tion etc.

Singular Matrix: If a n×n matrix [A] is singular it does not produce a unique
solution for set of linear equations [A]{x} = {b}.

Gauss Elimination: Use division and addition of systems of equations to put
A in the form of a lower triangular matrix and solve Ax = b by back
substitution. The linear system is solved in n3.

LU Factorization: Any process which converts A to LU . Gauss Elimination
is an example LU factorization.

Eigenvalue, Eigenvector Properties: A�x = λ�x ∀�x �= 0 ∃ λ which sat-
isfies the equation. λ can be found by solving the singular matrix

det |A− λI| = 0. (4.24)
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Error: The error at step m is defined as
∣∣e(m)

∣∣ =
∣∣x(m) − r

∣∣ where r is the
actual value and x(m) is the value at that iterative step. Note, r, x ∈ �n

Convergence: An iteration converges if the error is smaller each subsequent
step.

Asymptotic Order of Convergence:

lim
m→∞

∣∣e(m+1)
∣∣∣∣e(m)

∣∣p = K (4.25)

For convergence to occur K < 1, p is the order of convergence.

Consistent: A finite difference approximation that matches the taylor series
up to order p is called consistent to O(hp).

Fundamental Theorem of Numerical Stability: A necessary and sufficient
condition for convergence to the correct solution is (a) consistency and (b)
stability.

Amplification Factor: A test of stability for ordinary differential equations is
solving the equation for the simplest function y′ = Ay where the solution
is known y(x) = eAx. A solved using the method is the amplification
factor.

4.2.3 Solving Sets of Equations [A]{x} = [B]

Direct Method

The most common direct method is Gaussian Elimination it is an order n3

operation. LU decomposition and others are versions of Gaussian Elimination.

Fixed-Point Iteration in n Dimensions:

The basic theorem for fixed point iteration is If |g′(x)| < 1 ∀x ∈ [a, b]
surrounding a fixed point r, defined by r = g(r), then iteration of the form
x = g(x) converges to the fixed point r for any starting point in the interval
[a, b]. The generalized form �X = �G( �X) where X ∈ �n and �G ∈ �n converges
to the fixed point R for any starting point F for which the spectral radius of
the iteration matrix is strictly less than one

ρ
(
�G( �X)

)
< 1. (4.26)

Newton Iteration is used to solve the root finding equation �F ( �X) = 0 the
following fixed point iteration equation

�G( �X) = �X − [�F ′( �X)]−1 �F ( �X). (4.27)



100 CHAPTER 4. MATHEMATICAL METHODS

Jacobi Iteration is used to solve the system A�x = �b by separating the
A matrix into A = L + D + U where L is a lower triangular matrix D is a
diagonal and U is an upper triangular matrix. The system is solved by fixed
point iteration �x = b′−G′�x where G′ = D−1(L+U). Gauss Seidel Iteration
is used to solve the system A�x = �b by separating the A matrix into A = L+D+U
where L is a lower diagonal matrix D is a diagonal and U is an upper diagonal
matrix. The system is solved by fixed point iteration �x = b′ − G′�x where
G′ = (L+D)−1U .

Eigenvalue Problem:

Use the Power Method to solve Ax = λx guess an xo solve for Ax0 = z1
normalize z1 by dividing by its largest value member v1 and repeat Av1 = z2.
A Shifted Matrix has the matrix (A− sI) has the same eigenvector as A and
its eigenvalue is λ− s.

Problem Methods Comments on p, K
Bisection p = 1, K = 1/2

f(x) = 0 Secant p = 1.618...,K finite
(scalar) Newton p = 2,K finite

Fixed-point iteration of form x = g(x) p = 1,K = |g′(x)| < 1
Power method with A; find dominant

Ax = λx eigenvalue λ1 of A. p = 1, K = maxi �=1
|λi|
|λ1|

Power with (A− sI)−1 ; find λi, closest to s, p = 1, K = maxi �=j
|λi−s|
|λj−s|

Ax =b Fixed-point iteration of the form x = c−Bx p = 1, K = maxi |λi| < 1
where Jacobi: c = D−1b, B = D−1(L+ U) where λi are the
A = L+D + U Gauss Seidel: c = (L+D)−1b, B = (L+D)−1U eigenvalues of B.
F(X) = 0 Fixed-point iteration of the form X = G(X) p = 1,K = maxi |λi| < 1
(∈ �n x n) For Newton’s method where λi are the

G(X) = X − [F ′(X)]−1F (X), where [F ′(X)] eigenvalues of [G′(X)],
is the Jacobian matrix of F (X) the Jacobian matrix of

G(X)
p =2, K finite

Figure 4.1: Iterative Methods

4.2.4 Numerical Calculus

Finite Difference Approximations

The taylor expansion of a series around a point x0 is

f(x0 + h) = f(x) + hf ′(x0) +
hf ′′(x0)

2!
+ . . .+ hn f

(n)(x0)
n!

+ . . . (4.28)
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The finite difference approximation for the first derivative f ′ is:

f ′(x0) =
∂f

∂x

∣∣∣∣
x=x0

≈ f(x0 + h)− f(x0)
h

(4.29)

Using the taylor series expansion it can be shown that the truncation error
from this approximation is O(h). The roundoff error is also a factor since the
method requires a subtraction of nearly equal numbers. Higher order difference
equations are found by combining the taylor expansions at different points, or
converging from a different direction.

For example Richardson’s Extrapolation is formed from the following
two expansions:

f(x0+h) = f0+hf ′
0+

1
2
h2f ′′

0 +O(h3) and f(x0−h) = f0−hf ′
0+

1
2
h2f ′′

0 −O(h3).

(4.30)
For f0 = f(x0), f1 = f(x0 + h), and f−1 = f(x0 − h):

f ′
0 =

f1 − f−1

2h
+O(h2) +O(h4) · · · (4.31)

Repeat process and find f ′
0 at two different points to find an O(h4) truncation

error.

Method of Undetermined Coefficients

For derivation: given a set of points xi find an approximation formula of the form∑n+1
i �c · �f where the basis of �f is a set of functions. If the formula f̂ is expanded

using the set of power law expansion functions �f = {1, x, x2, . . . , xn}T . The
approximation is exact up to a truncation error of O(hn+1). Solve the system
of n× n equations:

f ′
0 = c0f0 + c1f1 + c2f2 . . . cnfn

f ′′
0 = c0f

′
0 + c1f

′
1 + c2f

′
2 . . . cnf

′
n

...
...

...
...

. . .
...

f
(n)
0 = c0f

(n)
0 + c1f

(n)
1 + c2f

(n)
2 . . . cnfm

(4.32)

For integration: again assume that the solution is a linear combination of
the test functions ∫ b

a

f(x)dx =
n∑

i=1

cifi (4.33)

For example the Trapezoidal rule can be found using two points in the ex-
pansion

∫ b

a
f(x)dx = c0f(a) + c1f(b) apply the method.∫ b

a

(1)dx = c0(1) + c1(1) = b− a∫ b

a

xdx = c0(a) + c1(b) =
b2

2
− a2

2
(4.34)
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Thus c0 = (b− a)/2 and c1 = (b− a)/2 and∫ b

a

f(x) ≈ b− a

2
[f(a) + f(b)]. (4.35)

To find Simpson’s rule take three points
∫ b

a
f(x)dx = c0f(a)+c1f

(
a+b
2

)
+

c2f(b). ∫ b

a

dx = c0 + c1 + c2 = b− a∫ b

a

xdx = c0a+ c1

(
a+ b

2

)
+ c2b =

b2

2
− a2

2∫ b

a

x2dx = c0a
2 + c1

(
a+ b

2

)2

+ c2b
2 =

b3

3
− a3

3
(4.36)

Solve to find c0 = c2 = 1
6 (b− a), c1 = 4

6 (b− a). Hence∫ b

a

f(x)dx ≈ b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
. (4.37)

More commonly b− a = 2h and a = x0∫ x0+2h

x0

f(x)dx ≈ h

3
(f0 + 4f1 + f2). (4.38)

The extended trapezoidal and expanded simpson’s rules are sums over n divi-
sions of the cross section.

Gaussian Quadrature

Similar to the method of undetermined coefficients, if the bounds on the integral
is known then the points at which the values are taken inside the bounds can
be derived. ∫ 1

−1

f(t) ≈ af(t1) + bf(t2) (4.39)

This equation must be true for a polynomial of degree three, hence

f(t) = 1;
∫ 1

−1

dt = 2 = a+ b

f(t) = t;
∫ 1

−1

tdt = 0 = at1 + bt2

f(t) = t2;
∫ 1

−1

t2dt =
2
3

= at21 + bt22

f(t) = t3;
∫ 1

−1

t3dt = 0 = at31 + bt32 (4.40)
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Find the governing equation 0 = 0 + b(t32 − t2t
2
1) = b(t2)(t2 − t1)(t2 + t1). The

only equality which can allow a term to go to zero and satisfy the equation
without reducing the formula to one term is t2 = −t1. Thus a = b = 1 and

t2 = −t1 =
√

1
3 . Approximations with more points require more terms.

Ordinary Differential Equations

As for the finite difference approximation include a desired number of terms of
the taylor series expansion and an error term:

y(x0 + h) = y(x0) + hy′(x0) +
y′′(ζ)h2

2
x0 < ζ < x0 + h (4.41)

Euler’s Method is written in the form

yn+1 = yn + hy′n (4.42)

Equations to be solved are in the form dy
dx = f(x, y). Start from the initial

conditions, choose an h and continue evaluating until the iteration converges.
Thus the values of x are xo, x0 + h, x0 + 2h and so on.

The Runge Kutta Method is equivalent to matching the first n terms of
the taylor expansion, but can be written in compacted form. The second order
method is equivalent to a modified euler method for a + b = 1, αb = 1

2 , and
βb = 1

2 .

yn+1 = yn +ak1 +bk2 where k1 = hf(xn, yn) and k2 = hf(xn +αh, yn +βk1)
(4.43)

The more commonly used fourth order Runge Kutta method is:

yn+1 = yn +
1
6

(k1 + 2k2 + 2k3 + k4)

k1 = hf (xn, yn)

k2 = hf

(
xn +

1
2
h, yn +

1
2
k1

)
k3 = hf

(
xn +

1
2
h, yn +

1
2
k2

)
k4 = hf (xn + h, yn + k3) (4.44)

Boundary-Value Problems

Shooting Method Suppose a value f(x) at x = a and x = b is known. If
f ′(a) were known this would be an initial value problem and solved accordingly.
Solve iteratively to find f(b) by guessing f ′(a).

Finite Difference can be used for linear equations. The resulting equa-
tion matrix can be solved directly by gaussian elimination or iteratively. Or
as a Characteristic Value Problem where the matrix is singular and the
determinant must also be zero for a unique solution to exist.
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4.3 Finite Element Method

4.3.1 References

• Finite Element Method

• Finite Element, Prof. Raimondo Betti, CU E4332, Fall 1999

4.3.2 Glossary

Interpolating Function: a power series or other polynomial expansion of a
continuous Function.

Shape function: A function which is given independently for each individual
node of a finite element. It returns a value of one at the node and zero at
every other node inside the element.

Stiffness Matrix: Generally it is the correspondence between input and out-
put. In specific terms, if {u} is the displacement vector and {f} is the
vector of forces applied at each node then:

{f} = [k]{u} (4.45)

where [k] is the stiffness matrix.

Connectivity: is the description of how elements are connected.

Rayleigh-Ritz Method: guess that the displacement can be given in the fol-
lowing form.

ũ = a1f1(x) + a2f2(x) . . . = aifi(x) (4.46)

The u(x) must be chosen such that the boundary conditions are satisfied
and the individual fi(x) are linearly independent. This guess is substituted
into the functional:

I(a1, a2, . . .) =
∫ b

a

[(
d
dx

∑
civi

)2

−Q
(∑

civi

)2

+ 2F
∑

civi

]
dx

(4.47)
This functional corresponds with the second-order linear boundary value
problem over [a, b] with Dirlechet boundary conditions y′′+Q(x)y = F (x)
and y(a) = y0 and y(b) = yn. Neuman boundary conditions result in a
different functional.

To find the minimum of the functional take derivatives in terms of ai.

∂I

∂ai
=

∫ b

a

2
(

du
dx

)
∂

∂ci

(
du
dx

)
dx−

∫ b

a

2Qu
(
∂u

∂ci

)
dx+ 2

∫ b

a

F

(
∂u

∂ci

)
dx

(4.48)



4.3. FINITE ELEMENT METHOD 105

Collocation Method: The residual of given ordinary differential equation y′′+
Q(x)y = F (x) is R(x) = y′′+Qy = F . Again approximate y(x) with a sys-
tem of trial functions u(x). Substitute u(x) into the equation and attempt
to make R(x) = 0

Galerkin Method: Instead of attempting to find the residual function R(x)
at zero the function times a weighting function is evaluated:∫ b

a

Wi(x)R(x)dx = 0, i = 0, 1, . . . , n (4.49)

Variational Formulation: minimize the energy function, the minimization
returns the governing equation if the function is known and an approxi-
mation to it if the function is approximated.

Strain Energy Density:

dW = σxdεx + σydεy + σzdεz + τxydγxy + τyzdγyz + τzxdγzx (4.50)

dW = [σ]dεT , dW = [E]ε dεT , W =
∫ ε

0

[E]εdεT =
1
2
εt[E]ε (4.51)

Conservative Force: path the work is done in is irrelevant.

Consistent Nodal Forces: Statically equivalent to actual forces.

Essential Boundary Condition: usually a geometric boundary condition.

Natural Boundary Condition: usually a displacement boundary condition.

Dirichlet Boundary Condition: Values at the boundary are constant.

Neuman Boundary condition: a constant times the derivative at the bound-
ary is constant (for example, flux or stress from a linear stress strain equa-
tion).

Lagrangian Interpolation: A linear element is defined by 2 nodes, higher
order elements must be defined by order +1 nodes.

The lagrangian polynomial can be used for interpolation, 1 at the node 0
elsewhere:

Ni(x) =
(x1 − x)(x2 − x) · · · (xi−1 − x)(xi+1 − x) · · · (xn − x)

(x1 − xi)(x2 − xi) · · · (xi−1 − xi)(xi+1 − xi)(xi+1 − x) · · · (xn − xi)
(4.52)

Isoparametric Element: An isoparametric element is in the form φ = a1 +
a2x+a3y+a4z. It is continuous only up to C0. For it the shape functions
for mapping and displacement are of the same type, order and value.
Generally well behaved for numerical integration.
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Superparametric Element: Mapping to quadrature plane of a higher order
than the shape functions of the displacement functions.

Subparametric Element: Mapping to quadrature plane of lower order map-
ping than displacement function.

Function Class: Cn only n derivatives are allowed, after n the derivatives are
discontinuous.

4.3.3 Theory

Finite Element Method for Ordinary Differential Equations

• Subdivide [a,b] into n subintervals, or elements, that join x1, x2, . . . , xn−1.
Add to this array the boundary conditions x0 = a and xn = b. Now xi

are nodes of the interval, and are not necessarily evenly spaced.

• Apply Galerkin method to each element separately to interpolate (subject
to a given differential equation) between u(xi−1) and u(xi). Where the
u’s are approximations to the y(xi)′s that are the true solution to the
differential equations. The nodal values become the ai.

• Use the lowest -degree polynomial for u(x).

• The result of applying Galerkin to element i is a pair of equations which
have the unknowns as the nodal values at the ends of the element, or the
ai. Combining the unknowns for each element gives a system of linear
equations.

• apply boundary conditions, get intermediate values for y(x) by linear in-
terpolation.

Finite Element Method for Elliptic Partial Differential Equations

A general elliptic equation is uxx +uyy +Q(x, y)u = F (x, y) on a region R that
is bounded by a curve L with the boundary conditions u(x, y) = u0 on L1 and
∂u
∂n = αu+ β on L2 where ∂u

∂n is the unit outward normal gradient.

• Find the functional that corresponds to the partial-differential equation.
This functional can be derived from the theory of Virtual Work and is
the Principle of Stationary Potential Energy if the system is at rest.

• Subdivide into subregions or elements. Every node and every side of the
elements must be common with adjacent elements except for sides on the
boundaries.

• Write an interpolating relation that gives values for the dependent variable
within an element based on the values of the nodes. The interpolation
should be a sum of n products of ai and a function vi(x, y) for an n noded
element.
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• Substitute the interpolating relation into the functional and set the partial
derivatives with respect to each node ai to zero.

• Combine together the elements and solve the resulting system of equations
after the boundary conditions have been imposed. The value of u(x, y) in
the interior region is given using the interpolating relations.

The Governing Functional

Strain energy density is related to body force −fi = ∂wf
∂ui

and surface force as
follows −ti = ∂wt

∂ui
. The potential energy function 1:

Πp =
∫

V

w(ũ)dV −
∫

V

fiuidV −
∫

A

tiuidA−
∑

Piui (4.55)

For axial loading and axial displacement, using the strain energy density for-
mulation:

Πp =
1
2

∫ L

0

εx[E]εxAdx−
∫ L

0

uq(x)dx (4.56)

Numerical Integration– Gaussian quadrature∫ 1

−1

f(ζ)dζ =
N∑

i=1

f(ζi)Wi +R ≈
N∑

i=1

f(ζi)Wi (4.57)

For a polynomial of points ζ1, ζ2, . . . the solution is exact if the points are
chosen as gauss points.

Since the numerical integration is from {−1, 1} each element must be mapped
into a square symmetrical plane. The Jacobian is used for this dxdy = |J |dζdη.

Two Dimensional Elements

Two dimensional elements with n nodes are in general represented by

φ(x, y) = N1(x, y)φ1 +N2(x, y)φ2 + . . .+Nn(x, y)φn (4.58)

1

Stationary Potential Energy Assumptions: (1) Conservative forces, (2) no discontinu-
ity (3) essential boundary conditions are satisfied.

The Potential Energy Function: Πp

Πp =

∫
wdV +

∫
wfdV +

∫
wtdA+ Πpc (4.53)

Energy is a scalar value and the energy contribution of each part of the system can be added
linearly due to the conservative function assumption.

Πpi =
1

2

∫
v1

εT [E]ε dV (4.54)
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Where Ni are the shape functions and φi are the nodal values. Use Linear
Lagrangian interpolation, first along the vertical nodes and then along the hor-
izontal.

Equilibrium and Compatibility:

• At the nodes: equilibrium of forces and compatibility are always satis-
fied.

• At the boundaries: equilibrium not usually satisfied. more elements
lead to less stress and unbalance in the boundary. In the limit equilibrium
is satisfied.

• Inside elements: equilibrium is usually not satisfied.

4.3.4 Application

Bar

Governing Equation: �p = [K]�u where �p is the force applied at each node, [K] is
the stiffness matrix and �u is the displacement at each node.

One linear elastic one-dimensional bar in its local coordinate system:

{p̄} =


P̄xi

P̄yi

P̄xj

P̄yj

 =
EA

L


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0



ūi

v̄i

ūj

v̄j

 = [K̄]{ū}. (4.59)

Using the stationary potential energy formulation:

Πp =
1
2

∫
εxEεxAdx−

∫ L

0

uq(x)dx (4.60)

Finite Element Approach

Rewrite the principle of stationary potential energy in terms of displacements.
Energy is a scalar so the energies of the components can be added together
without regard to direction.

Πpi =
1
2

∫
Vi

ε̃T [E]ε̃dV −
∫

Vi

ũT fdV −
∫

A

ũT t̃dA−Πi
c (4.61)

1. Find expression of ε in terms of u. Using a linear approximation u =
mx̄ + b = uj−ui

L + ui. Parametrize to find the value of u in between the
nodes, and according to the interpolation: u = L−x̄

L ui + x̄
Luj = [N ]{�u}.

εx =
du
dx̄

= [− 1
L

1
L ]

{
ui

uj

}
(4.62)

Build the strain energy matrix.

1
2
ε̃T [E]ε =

1
2
{ui uj }

EA

L

(
1 −1
−1 1

) {
ui

uj

}
(4.63)
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The general stiffness matrix expression: [B]T [E][B] where [B] is the gra-
dient of the shape function [N ].

2. Find applied forces.

∫
V

ūT fdV = {ui uj }
{∫ L

0
N1(x̄)fdx̄∫ L

0
N2(x̄)fdx̄

}
= −{ui uj }

{
rf
1

rf
2

}
(4.64)

The 1 −D potential energy formulation.

Πp =
1
2
{ui}T {ui}

EA

L

+
1
2
{u1 u2 }[K12]{u1

u2
} +

1
2
{u2 u3 }[K23]{u2

u3
} · · ·

− {u1}{rf
1 + rt

1 + rc
1} − {u2 u3 }{

ṙf
1 + ṙt

1 + ṙc
1

ṙf
2 + ṙt

2 + ṙc
2

} · · · (4.65)

3. Use principal of potential energy to solve for the equilibrium state, using
essential boundary conditions.

∂Πp

∂ui
= 0, [K]{ui} = {Ri} (4.66)

Truss

A truss can be represented as a combination of one dimensional bars. The angle
of the bar coordinates to the global coordinate system is θ. The final matrix
equation is a linear superposition of each component bar: {p} = [T ]T [K̄][T ]{u},
where [T ] is the rotation matrix.

[T ] =


cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 cos θ sin θ
0 0 − sin θ cos θ

 (4.67)

It may be convenient to segment the resulting matrix into known an unknown
parts. According to the uniqueness requirements of the continuum equations
either forces or displacements need to be prescribed at every node.

To find displacements of a truss combine the matrix into the form [K]{u} =
{P} impose boundary conditions – either forces or displacements — to solve.
Since stresses are constant along each axial member the internal forces are also
known.

The penalty method is used to account for a null column in the stiffness
matrix.
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Beam

Governing Equation: κ = d2v
dx2 = M

EI , in a two dimensional isotropic beam in
which Poisson’s effect has been neglected and the plane sections are assumed to
be planar. κ is the curvature and EI is the bending stiffness.

S =
dM
dx

, q =
dS
dx

=
d2M

dx2
= EI

d4v

dx4
= EI

d3θ

dx3
(4.68)

Integrate to find the constants for each of the beam elements. Recombine
to create a matrix of the following form {P̃} = [K]{ũ}:

P̄i

M̄i

P̄j

M̄j

 = EI


12
L3

6
L2

−12
L3

−6
L2

6
L2

4
L

−6
L2

2
L−12

L3
−6
L2

12
L3

6
L3

−6
L2

2
L

−6
L2

4
L



v̄i

θ̄i

v̄j

θ̄j

 (4.69)

Either the forces at the boundary or the displacements need to be known to
solve.

Shape Functions For a Rectangle: The behavior at any point in the
rectangle as defined by the nodal points is approximated by:

φ = N1φ1 +N2φ2 +N3φ3 +N4φ4 (4.70)

In general the interpolation function for a rectangle is

φ = A+Bx+ Cy +Dxy (4.71)

Now the value of φ is known at the nodal points for φ(0, 0) = φ1, φ(a, 0) = φ2,
φ(a, b) = φ3 and φ(0, b) = φ4.

φ1 = A φ2 = A+Ba φ3 = A+Ba+ Cb+Dab φ4 = A+ Cb (4.72)

Substituting into the interpolation function find:

N1 =
(a− x)(b− y)

ab
N2 =

x(b− y)
ab

N3 =
xy

ab
N4 =

y(a− x)
ab

(4.73)

Isoparametric Elements

Isoparametric elements are two dimensional finite elements in a ζ, η plane with
four nodes,find the interpolation function if the origin is at the center of the
square and the lenghts of the sides are two:

Φ(ξ, η) = N1Φ1 +N2Φ2 +N3Φ3 +N4Φ4 (4.74)

N1 =
1
4
(1− ξ)(1− η), N2 =

1
4
(1 + ξ)(1− η), (4.75)

N3 =
1
4
(1 + ξ)(1 + η), N4 =

1
4
(1− ξ)(1 + η) (4.76)
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The geometrical coordinates �x can now be written in terms of this shape func-
tion, here k is the number of nodes:

�x(�ξ) =
k∑

i=1

Ni�xi (4.77)

where �xi is the location of the coordinate i in geometrical coordinates. All other
properties pertaining to the problem can be distributed similarly (in cartesian
coordinates).

�u(ξ, η) =
k∑

i=1

Ni�ui and strain εij =
1
2

(
∂ui

∂ξk

∂ξk
∂xj

+
∂uj

∂ξk

∂ξk
∂xi

)
(4.78)

The Jacobian matrix is
J =

∂�x

∂�ξ
. (4.79)

The stiffness matrix then is

[K] =
∫ 1

−1

∫ 1

−1

t[B]T [E][B]|J−1|dξdη (4.80)

Here t is the thickness and [B] = J−1[N,ξ ]. It is conveneint to evaluate the
Jacobian matrix and other approximated values at the Gauss points to evaluate
the integral directly using gaussian quadrature (note that quadrature points are
derived for a one dimensional problem and the two dimensional extension is not
necessarily valid).
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Appendix

Mathematical Tools

Leibnitz rule:

∂

∂x

∫ b(x)

a(x)

f(x, y)dy =
∫ b(x)

a(x)

∂f

∂x
dy + f [x, b(x)]

db
dx

− f [x, a(x)]
da
dx

(4.81)

Stoke’s Equation: ∫
S

(∇× �v)dS =
∮

C

�vdC (4.82)

Divergence Theorem: ∫
S

�v · �ndS =
∫

V

∇ · �vdV (4.83)
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